Advertisement

The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis

  • Barnali Bhattacharya
  • Rajkumar Mondal
  • Utpal Sarkar
Original Paper
  • 74 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

Density functional theory (DFT) combined with nonequilibrium Green’s function (NEGF) formalism are used to investigate the effects of substitutional doping by nitrogen and sulfur on transport properties of AGNR-pentalene-AGNR nanojunction. A considerable spin filtering capability in a wide bias range is observed for all systems, which may have potential application in spintronics devices. Moreover, all model devices exhibit a negative differential effect with considerable peak-to-valley ratio. Thus, our findings provide a way to produce multifunctional spintronic devices based on nitrogen and sulfur doped pentalene-AGNR nanojunctions. The underlying mechanism for this interesting behavior was exposed by analyzing the transmission spectrum as well as the electrostatic potential distribution. In addition, a system doped with an odd number of dopant shows a rectifying efficiency comparable to other systems. The above findings strongly imply that such a multifunctional molecular device would be a useful candidate for molecular electronics.

Graphical abstract

The graphene-pentalene-graphene molecular junction

Keywords

Density functional theory Spin filtering effect Negative differential effect Molecular junction Rectification ratio 

Notes

Acknowledgments

We dedicated this work to celebrate the 60th birthday of Prof. Pratim K. Chattaraj. Miss Barnali Bhattacharya would like to thank CSIR for providing a fellowship.

Supplementary material

894_2018_3818_MOESM1_ESM.docx (4.5 mb)
ESM 1 (DOCX 4572 kb)

References

  1. 1.
    Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283CrossRefGoogle Scholar
  2. 2.
    Taylor J, Guo H, Wang J (2001) Ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C60 device. Phys Rev B 63:121104CrossRefGoogle Scholar
  3. 3.
    Martin AS, Sambles JR, Ashwell GJ (1993) Molecular rectifier. Phys Rev Lett 70:218–221CrossRefGoogle Scholar
  4. 4.
    Kim T, Liu ZF, Lee C, Neaton JB, Venkataraman L (2014) Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc Natl Acad Sci U S A 111:10928–10932CrossRefGoogle Scholar
  5. 5.
    Wan HQ, Xu Y, Zhou GH (2012) Dual conductance, negative differential resistance, and rectifying behavior in a molecular device modulated by side groups. J Chem Phys 136:184704CrossRefGoogle Scholar
  6. 6.
    Batra A, Darancet P, Chen QS, Meisner JS, Widawsky JR, Neaton JB, Nuckolls C, Venkataraman L (2013) Tuning rectification in single-molecular diodes. Nano Lett 13:6233–6237CrossRefGoogle Scholar
  7. 7.
    Li V, Zhang ZH, Zhang JJ, Tian W, Fan ZQ, Deng XQ, Tang GP (2013) Spin polarization effects of zigzag-edge graphene electrodes on the rectifying performance of the D-σ-a molecular diode. Org Electron 14:958–965CrossRefGoogle Scholar
  8. 8.
    Pramanik A, Sarkar S, Sarkar P (2012) Doped GNR p−n junction as high performance NDR and rectifying device. J Phys Chem C 116:18064–18069CrossRefGoogle Scholar
  9. 9.
    Chakrabarty S, Wasey AHMA, Thapa R, Das GP (2015) First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device. AIP Adv 5:087163CrossRefGoogle Scholar
  10. 10.
    Asadi K, Katsouras I, Harkema J, Gholamrezaie F, Smits ECP, Biscarini F, Blom PWM, de Leeuw DM (2012) Organic field-effect transistors as a test-bed for molecular electronics: a combined study with large-area molecular junctions. Org Electron 13:2502–2507CrossRefGoogle Scholar
  11. 11.
    Wan HQ, Zhou BH, Chen XW, Sun CQ, Zhou GH (2012) Switching, dual spin-filtering effects, and negative differential resistance in a carbon-based molecular device. J Phys Chem C 116:2570–2574CrossRefGoogle Scholar
  12. 12.
    Zeng MG, Shen L, Cai YQ, Sha ZD (2010) Feng YP, Perfect spin-filter and spin-valve in carbon atomic chains. Appl Phys Lett 96:042104CrossRefGoogle Scholar
  13. 13.
    Ni Y, Yao KL, Tang CQ, Gao GY, Fu HH, Zhu SC (2014) Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Adv 4:18522–18528CrossRefGoogle Scholar
  14. 14.
    Huang J, Xu K, Lei SL, Su HB, Yang SF, Li QX, Yang JL (2012) Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. J Chem Phys 136:064707CrossRefGoogle Scholar
  15. 15.
    Caliskan S, Laref A (2014) Spin transport properties of n-polyacene molecules (n=1–15) connected to Ni surface electrodes: theoretical analysis. Sci Rep 4:7363CrossRefGoogle Scholar
  16. 16.
    Zu F, Liu Z, Yao K, Gao G, Fu H, Zhu S, Ni Y, Peng L (2014) Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe4-based single-molecule junction. Sci Rep 4:4838CrossRefGoogle Scholar
  17. 17.
    Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286:1550–1552CrossRefGoogle Scholar
  18. 18.
    Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16011–16021CrossRefGoogle Scholar
  19. 19.
    Liu R, Ke SH, Baranger HU, Yang W (2005) Intermolecular effect in molecular electronics. J Chem Phys 122:044703CrossRefGoogle Scholar
  20. 20.
    Kaneko S, Murai D, Marques-Gonzalez S, Nakamura H, Komoto Y, Fujii S, Nishino T, Ikeda K, Tsukagoshi K, Manabu K (2016) Site-selection in single-molecule junction for highly reproducible molecular electronics. J Am Chem Soc 138:1294–1300CrossRefGoogle Scholar
  21. 21.
    Hao H, Zheng XH, Song LL, Wang RN, Zeng Z (2012) Electrostatic spin crossover in a molecular junction of a single molecule magnet Fe2. Phys Rev Lett 108:017202CrossRefGoogle Scholar
  22. 22.
    Wu QH, Zhao P, Chen G (2015) Magnetic transport properties of DBTAA-based nanodevices with graphene nanoribbon electrodes. Org Electron 25:308–316CrossRefGoogle Scholar
  23. 23.
    Carrascal D, García-Suarez VM, Ferrer J (2012) Impact of edge’ shape on the functionalities of graphene-based single-molecule electronics devices. Phys Rev B 85:195434CrossRefGoogle Scholar
  24. 24.
    Zeng J, Chen KQ (2013) Spin filtering, magnetic and electronic switching behaviors in manganese porphyrin-based spintronic devices. J Mater Chem C 1:4014–4019CrossRefGoogle Scholar
  25. 25.
    Ning ZY, Zhu Y, Wang J, Guo H (2008) Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions. Phys Rev Lett 100:056803CrossRefGoogle Scholar
  26. 26.
    Rocha AR, García-suárez VM, Bailey SW, Lambert CJ, Ferrer J, Sanvito S (2005) Towards molecular spintronics. Nat Mater 4:335–339CrossRefGoogle Scholar
  27. 27.
    Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Pentacene-based organic thin-film transistors. IEEE Trans Electron Devices 44:1325–1331CrossRefGoogle Scholar
  28. 28.
    Nelson SF, Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1998) Temperature-independent transport in high-mobility pentacene transistors. Appl Phys Lett 72:1854–1856CrossRefGoogle Scholar
  29. 29.
    Pramanik A, Mandal B, Sarkar S, Sarkar P (2014) Effect of edge states on the transport properties of pentacene–graphene nanojunctions. Chem Phys Lett 597:1–5CrossRefGoogle Scholar
  30. 30.
    Li X, Cao L, Li HL, Wan H, Zhou G (2016) Spin-resolved transport properties of a pyridine-linked single molecule embedded between zigzag-edged graphene nanoribbon electrodes. J Phys Chem C 120:3010–3018CrossRefGoogle Scholar
  31. 31.
    Rauba JMC, Strange M, Thygesen KS (2008) Quantum conductance of 4,4-bipyridine molecular junctions: role of electrode work function and local d band. Phys Rev B 78:165116CrossRefGoogle Scholar
  32. 32.
    Yuan S, Wang S, Wang Y, Ling Q (2017) Effect of molecular structure on spin-dependent electron transport in biferrocene-based molecular junctions: a first-principles study. J Comput Electron 16:340–346CrossRefGoogle Scholar
  33. 33.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  34. 34.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  35. 35.
    Adak O, Korytar R, Joe AY, Evers F, Venkataraman L (2015) Impact of electrode density of states on transport through pyridinelinked single molecule junctions. Nano Lett 15:3716–3722CrossRefGoogle Scholar
  36. 36.
    Di CA, Wei DC, Yu G, Liu YQ, Guo YL, Zhu DB (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20:3289–3293CrossRefGoogle Scholar
  37. 37.
    Lee CG, Park S, Ruoff RS, Dodabalapur A (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95:023304CrossRefGoogle Scholar
  38. 38.
    Pengfei L, Caiyun C, Jie Z, Shaojuan L, Baoquan S, Qiaoliang B (2014) Graphene-based transparent electrodes for hybrid solar cells. Front Mater 1:26Google Scholar
  39. 39.
    Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRefGoogle Scholar
  40. 40.
    Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805CrossRefGoogle Scholar
  41. 41.
    Zhang A, Wu Y, Ke SH, Feng YP, Zhang C (2011) Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Nanotechnology 22:435702CrossRefGoogle Scholar
  42. 42.
    Koskinen P, Malola S, Hakkinen H (2008) Self-passivating edge reconstructions of graphene. Phys Rev Lett 101:115502CrossRefGoogle Scholar
  43. 43.
    Kobayashi Y, Fukui KI, Enoki T, Kusakabe K, Kaburagi Y (2005) Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B 71:193406CrossRefGoogle Scholar
  44. 44.
    Lin HH, Hikihara T, Jeng HT, Huang BL, Mou CY, Hu X (2009) Ferromagnetism in armchair graphene nanoribbons. Phys Rev B 79:035405CrossRefGoogle Scholar
  45. 45.
    Jacob J, Sax S, Piok T, List EJW, Grimsdale AC, Mullen K (2004) Ladder-type pentaphenylenes and their polymers: efficient blue-light emitters and electron-accepting materials via a common intermediate. J Am Chem Soc 126:6987–6995CrossRefGoogle Scholar
  46. 46.
    Zhu X, Mitsui C, Tsuji H, Nakamura E (2009) Modular synthesis of 1H-indenes, dihydro-s-indacene, and diindenoindacene—a carbon-bridged p-phenylenevinylene congener. J Am Chem Soc 131:13596–13597CrossRefGoogle Scholar
  47. 47.
    Kawase T, Fujiwara T, Kitamura C, Konishi A, Hirao Y, Matsumoto K, Kurata H, Kubo T, Shinamura S, Mori H, Miyazaki E, Takimiya K (2010) Dinaphthopentalenes: pentalene derivatives for organic thin-film transistors. Angew Chem 122:7894–7898CrossRefGoogle Scholar
  48. 48.
    Dai G, Chang J, Zhang W, Bai S, Huang KW, Xu J, Chi C (2015) Dianthraceno[a,e]pentalenes: synthesis, crystallographic structures and applications in organic field-effect transistors. Chem Commun 51:503–506CrossRefGoogle Scholar
  49. 49.
    Yang Z, Wang D, Liu X, Xu LC, Xiong S, Xu B (2014) Magnetic and quantum transport properties of small-sized transition-metal-pentalene sandwich cluster. J Phys Chem C 118:29695–29703CrossRefGoogle Scholar
  50. 50.
    Singh NB, Bhattacharya B, Sarkar U (2014) A first principle study of pristine and BN−doped graphyne family. Struct Chem 25:1695–1710CrossRefGoogle Scholar
  51. 51.
    Bhattacharya B, Singh NB, Mondal R, Sarkar U (2015) Electronic and optical properties of pristine and boron–nitrogen doped graphyne nanotubes. Phys Chem Chem Phys 17:19325–19341CrossRefGoogle Scholar
  52. 52.
    Bhattacharya B, Sarkar U (2016) The effect of boron and nitrogen doping in electronic magnetic and optical properties of graphyne. J Phys Chem C 120:26793–26806CrossRefGoogle Scholar
  53. 53.
    Sarkar U, Bhattacharya B, Seriani N (2015) First principle study of sodium decorated graphyne. Chem Phys 461:74–80CrossRefGoogle Scholar
  54. 54.
    Bhattacharya B, Sarkar U, Seriani N (2016) Electronic properties of homo and hetero bilayer graphyne: the idea of a nanocapacitor. J Phys Chem C 120:26579–26587CrossRefGoogle Scholar
  55. 55.
    Bhattacharya B, Singh NB, Sarkar U (2015) Pristine and BN doped graphyne derivatives for UV light protection. Int J Quantum Chem 115:820–829CrossRefGoogle Scholar
  56. 56.
    Bhattacharya B, Sarkar U (2016) Graphyne–graphene (nitride) heterostructure as nanocapacitor. Chem Phys 478:73–80CrossRefGoogle Scholar
  57. 57.
    Zou F, Zhu L, Yao K (2015) Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons. Sci Rep 5:15966CrossRefGoogle Scholar
  58. 58.
    Mandal B, Sarkar S, Pramanik A, Sarkar P (2012) Electronic structure and transport properties of sulfur-passivated graphene nanoribbons. J Appl Phys 112:113710CrossRefGoogle Scholar
  59. 59.
    Ordejón P, Artacho E, Soler JM (1996) Self−consistent order−n density−functional calculations for very large systems. Phys Rev B 53:R10441–−R10444CrossRefGoogle Scholar
  60. 60.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  61. 61.
    Troullier N, Martins J (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74:613–616CrossRefGoogle Scholar
  62. 62.
    Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401CrossRefGoogle Scholar
  63. 63.
    Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  64. 64.
    Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215CrossRefGoogle Scholar
  65. 65.
    Sarkar S, Pramanik A, Sarkar P (2016) Quantum transport behavior of Ni-based dinuclear complexes in presence of zigzag graphene nanoribbon as electrode. Chem Phys 478:173–177CrossRefGoogle Scholar
  66. 66.
    Kawase T, Nishida J (2015) π-extended pentalenes: the revival of the old compound from new standpoints. Chem Rec 15:1045–1059CrossRefGoogle Scholar
  67. 67.
    Tayo BO (2015) Band gap engineering in finite elongated graphene nanoribbon heterojunctions: tight-binding model. AIP Adv 5:087121CrossRefGoogle Scholar
  68. 68.
    Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726–4730Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAssam UniversitySilcharIndia

Personalised recommendations