Advertisement

Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study

  • K. Vijay Reddy
  • Snehanshu Pal
Original Paper
  • 102 Downloads

Abstract

In this paper, constant load bending tests were performed on a nanocrystalline Ni nanowire specimen at different deformation temperatures using molecular dynamics simulation to investigate deformation behavior and mechanisms responsible for fracture. The nature of the fracture occurred in this nanowire specimen is found to transit from brittle to ductile as the temperature rises from 500 to 800 K. Also, with an increase in temperature, the fracture strain is increased indicating more plastic deformation prior to fracture. In the case of 500 K and 600 K deformation temperatures, fracture occurred along the shear band due to slip-twin interaction. On the other hand, at comparatively higher deformation temperatures, such as 700 K and 800 K, twinning and detwinning mechanisms are responsible for accommodating large plastic strain before fracture thus imparting plasticity in the specimen. It has also been found that formation and collapse of the stacking fault tetrahedron causes fracture of nanocrystalline Ni nanowire at 800 K.

Keywords

Ni nanowire Bending test Plasticity Molecular dynamics 

Notes

Acknowledgments

The authors would like to acknowledge the Computer Centre of National Institute of Technology Rourkela for providing the high-performance computing facility (HPCF), which was essential for carrying out this molecular dynamics study.

References

  1. 1.
    Weinberger CR, Cai W (2012) Plasticity of metal nanowires. J Mater Chem 22(8):3277–3292CrossRefGoogle Scholar
  2. 2.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525CrossRefGoogle Scholar
  3. 3.
    Rezaei R, Deng C (2017) Pseudoelasticity and shape memory effects in cylindrical FCC metal nanowires. Acta Mater 132:49–56CrossRefGoogle Scholar
  4. 4.
    An BH, Jeon IT, Seo JH, Ahn JP, Kraft O, Choi IS, Kim YK (2016) Ultrahigh tensile strength nanowires with a Ni/Ni–Au multilayer nanocrystalline structure. Nano Lett 16(6):3500–3506CrossRefGoogle Scholar
  5. 5.
    Oener SZ, van de Groep J, Macco B, Bronsveld PC, Kessels WMM, Polman A, Garnett EC (2016) Metal–insulator–semiconductor nanowire network solar cells. Nano Lett 16(6):3689–3695CrossRefGoogle Scholar
  6. 6.
    Tian B, Zheng X, Kempa TJ, FangY YN, Yu G, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889CrossRefGoogle Scholar
  7. 7.
    Yu K, Major TA, Chakraborty D, Devadas MS, Sader JE, Hartland GV (2015) Compressible viscoelastic liquid effects generated by the breathing modes of isolated metal nanowires. Nano Lett 15(6):3964–3970CrossRefGoogle Scholar
  8. 8.
    Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503(4):115–163CrossRefGoogle Scholar
  9. 9.
    Lu Y, Song J, Huang JY, Lou J (2011) Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res 4(12):1261–1267CrossRefGoogle Scholar
  10. 10.
    Chen LY, He MR, Shin J, Richter G, Gianola DS (2015) Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat Mater 14(7):707CrossRefGoogle Scholar
  11. 11.
    Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao SX (2013) Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun 4:1742CrossRefGoogle Scholar
  12. 12.
    Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, Wang ZL (2012) Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B 85(4):045443CrossRefGoogle Scholar
  13. 13.
    Elsner BAM, Müller S, Bargmann S, Weissmüller J (2017) Surface excess elasticity of gold: Ab initio coefficients and impact on the effective elastic response of nanowires. Acta Mater 124:468–477CrossRefGoogle Scholar
  14. 14.
    Esfahani MN, Sonne MR, Hattel JH, Alaca BE (2016) Thermo-coupled surface Cauchy–Born theory: an engineering finite element approach to modeling of nanowire thermomechanical response. Mech Mater 94:46–52CrossRefGoogle Scholar
  15. 15.
    Sepúlveda-Macías M, Amigo N, Gutiérrez G (2016) Onset of plasticity and its relation to atomic structure in CuZr metallic glass nanowire: a molecular dynamics study. J Alloys Compd 655:357–363CrossRefGoogle Scholar
  16. 16.
    Lao J, Tam MN, Pinisetty D, Gupta N (2013) Molecular dynamics simulation of FCC metallic nanowires: a review. JOM 65(2):175–184CrossRefGoogle Scholar
  17. 17.
    Hu L, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963CrossRefGoogle Scholar
  18. 18.
    Yao S, Zhu Y (2015) Nanomaterial enabled stretchable conductors: strategies, materials and devices. Adv Mater 27(9):1480–1511CrossRefGoogle Scholar
  19. 19.
    Lim JW, Cho DY, Eun K, Choa SH, Na SI, Kim J, Kim HK (2012) Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells. Sol Energy Mater Sol Cells 105:69–76CrossRefGoogle Scholar
  20. 20.
    Nath SD (2014) Elastic, elastic–plastic properties of Ag, Cu and Ni nanowires by the bending test using molecular dynamics simulations. Comput Mater Sci 87:138–144CrossRefGoogle Scholar
  21. 21.
    Zhan HF, Gu Y, Yan C, Yarlagadda PKDV (2014) Bending properties of Ag nanowires with pre-existing surface defects. Comput Mater Sci 81:45–51CrossRefGoogle Scholar
  22. 22.
    Nöhring WG, Möller JJ, Xie Z, Bitzek E (2016) Wedge-shaped twins and pseudoelasticity in fcc metallic nanowires under bending. Extreme Mech Lett 8:140–150CrossRefGoogle Scholar
  23. 23.
    Klinger L, Rabkin E (2006) Thermal stability and creep of polycrystalline nanowires. Acta Mater 54(2):305–311CrossRefGoogle Scholar
  24. 24.
    Meraj M, Pal S (2017) Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy. Met Mater Int 23(2):272–282CrossRefGoogle Scholar
  25. 25.
    Pal S, Meraj M, Deng C (2017) Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulations. Comput Mater Sci 126:382–392CrossRefGoogle Scholar
  26. 26.
    Pal S, Meraj M (2016) Structural evaluation and deformation features of interface of joint between nano-crystalline Fe–Ni–Cr alloy and nano-crystalline Ni during creep process. Mater Des 108:168–182CrossRefGoogle Scholar
  27. 27.
    Reddy KV, Meraj M, Pal S (2017) Mechanistic study of bending creep behaviour of bicrystal nanobeam. Comput Mater Sci 136:36–43CrossRefGoogle Scholar
  28. 28.
    Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219CrossRefGoogle Scholar
  29. 29.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  30. 30.
    Mendelev MI, Kramer MJ, Hao SG, Ho KM, Wang CZ (2012) Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy. Philos Mag 92(35):4454–4469CrossRefGoogle Scholar
  31. 31.
    Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83(8):4069–4074CrossRefGoogle Scholar
  32. 32.
    Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015012CrossRefGoogle Scholar
  33. 33.
    Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91(19):4950–4963CrossRefGoogle Scholar
  34. 34.
    Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20(8):085007CrossRefGoogle Scholar
  35. 35.
    Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48(11):2923–2927CrossRefGoogle Scholar
  36. 36.
    Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev B 57(6):7192CrossRefGoogle Scholar
  37. 37.
    Zhang JC, Chen C, Pei QX, Wan Q, Zhang WX, Sha ZD (2015) Ab initio molecular dynamics study of the local atomic structures in monatomic metallic liquid and glass. Mater Des 77:1–5CrossRefGoogle Scholar
  38. 38.
    Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci 2(2):279–286CrossRefGoogle Scholar
  39. 39.
    Timoshenko SP, Gere JM (1972) Mechanics of materials. Reinhold, New YorkGoogle Scholar
  40. 40.
    O’Brien CJ, Foiles SM (2016) Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion. J Mater Sci 51(14):6607–6623CrossRefGoogle Scholar
  41. 41.
    Kim HS, Estrin Y, Bush MB (2000) Plastic deformation behaviour of fine-grained materials. Acta Mater 48(2):493–504CrossRefGoogle Scholar
  42. 42.
    Kassner ME, Smith KK, Campbell CS (2015) Low-temperature creep in pure metals and alloys. J Mater Sci 50(20):6539–6551CrossRefGoogle Scholar
  43. 43.
    Jia N, Eisenlohr P, Roters F, Raabe D, Zhao X (2012) Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater 60(8):3415–3434CrossRefGoogle Scholar
  44. 44.
    Qu S, Zhou H, Huang Z (2011) Shear band initiation induced by slip-twin boundary interactions. Scr Mater 65(8):715–718CrossRefGoogle Scholar
  45. 45.
    Lagerlöf KPD, Castaing J, Pirouz P, Heuer AH (2002) Nucleation and growth of deformation twins: a perspective based on the double-cross-slip mechanism of deformation twinning. Philos Mag A 82(15):2841–2854CrossRefGoogle Scholar
  46. 46.
    Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277CrossRefGoogle Scholar
  47. 47.
    Seita M, Hanson JP, Gradecak S, Demkowicz MJ (2015) The dual role of coherent twin boundaries in hydrogen embrittlement. Nat Commun 6:6164CrossRefGoogle Scholar
  48. 48.
    Prasad KE, Ramamurty U (2012) Effect of temperature on the plastic zone size and the shear band density in a bulk metallic glass. Mater Sci Eng A 535:48–52CrossRefGoogle Scholar
  49. 49.
    Pineau A, Benzerga AA, Pardoen T (2016) Failure of metals I: brittle and ductile fracture. Acta Mater 107:424–483CrossRefGoogle Scholar
  50. 50.
    Yamakov V, Wolf D, Phillpot SR, Gleiter H (2003) Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater 51(14):4135–4147CrossRefGoogle Scholar
  51. 51.
    Li PT, Yang YQ, Luo X, Jin N, Liu G, Feng ZQ (2017) Effect of rate dependence of crack propagation processes on amorphization in Al. Mater Sci Eng A 684:71–77CrossRefGoogle Scholar
  52. 52.
    Zhu T, Gao H (2012) Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scr Mater 66(11):843–848CrossRefGoogle Scholar
  53. 53.
    Zhu YT, Wu XL, Liao XZ, Narayan J, Kecskes LJ, Mathaudhu SN (2011) Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater 59(2):812–821CrossRefGoogle Scholar
  54. 54.
    Silcox J, Hirsch PB (1959) Direct observations of defects in quenched gold. Philos Mag 4(37):72–89CrossRefGoogle Scholar
  55. 55.
    Wu L, Yu W, Hu S, Shen S (2017) Stability of stacking fault tetrahedron in twin boundary bicrystal copper under shear. Int J Plast 97:246–258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations