Advertisement

The influence of correlation on (de)localization indices from a valence bond perspective

  • Guillaume Acke
  • Patrick Bultinck
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

When going beyond the Hartree–Fock level to correlated methods, one observes a significant reduction in the delocalization index. This is commonly interpreted as a weakening of electron sharing due to electron correlation, although this is rather counter-intuitive to the concomitant energy lowering. In this study, we use an analytical valence bond model and full CI calculations to show that this reduction in the delocalization index actually goes hand in hand with increased covalent contributions at the expense of ionic contributions. This suggests that we should be careful in formulating interpretations of these results in (de)localization indices.

Graphical Abstract

Variation of the localization Δ(ΩA, ΩA) and delocalization index Δ(ΩA, ΩB) as a function of the parameter ω. By adjusting this parameter ω from \( \frac {\pi }{4}\) to 0, we can gradually change the underlying wave function from a Hartree-Fock to a Heitler-London description.

Keywords

Valence bond theory Chemical bonding Delocalization index 

References

  1. 1.
    Frenking G, Shaik S (2014) The chemical bond: fundamental aspects of chemical bonding. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Ruedenberg K (1962) Rev Mod Phys 34(2):326CrossRefGoogle Scholar
  3. 3.
    Mayer I (2007) J Comput Chem 28(1):204CrossRefGoogle Scholar
  4. 4.
    Giambiagi M, Giambiagi M, Grempel DR, Heymann CD (1975) J Chim Phys 72:15CrossRefGoogle Scholar
  5. 5.
    Bader RF, Stephens ME (1974) Chem Phys Lett 26(3):445CrossRefGoogle Scholar
  6. 6.
    Bader RF, Streitwieser A, Neuhaus A, Laidig KE, Speers P (1996) J Am Chem Soc 118(21):4959CrossRefGoogle Scholar
  7. 7.
    Fradera X, Austen MA, Bader RF (1999) J Phys Chem A 103(2):304CrossRefGoogle Scholar
  8. 8.
    Ponec R, Cooper DL (2005) J Mol Struct THEOCHEM 727(1-3):133CrossRefGoogle Scholar
  9. 9.
    Wiberg KB (1968) Tetrahedron 24(3):1083CrossRefGoogle Scholar
  10. 10.
    Mayer I (1983) Chem Phys Lett 97(3):270CrossRefGoogle Scholar
  11. 11.
    Mayer I (2012) Chem Phys Lett 544:83CrossRefGoogle Scholar
  12. 12.
    Bultinck P, Cooper DL, Ponec R (2010) J Phys Chem A 114(33):8754CrossRefGoogle Scholar
  13. 13.
    Ponec R (1994) Collect Czechoslov Chem Commun 59(3):505CrossRefGoogle Scholar
  14. 14.
    Ponec R, Duben AJ (1999) J Comput Chem 20(8):760CrossRefGoogle Scholar
  15. 15.
    Ponec R, Roithová J (2001) Theor Chem Accounts 105(4-5):383CrossRefGoogle Scholar
  16. 16.
    Ponec R, Cooper DL (2007) Faraday Discuss 135:31CrossRefGoogle Scholar
  17. 17.
    de Giambiagi MS, Giambiagi M, Jorge FE (1985) Theor Chim Acta 68(5):337CrossRefGoogle Scholar
  18. 18.
    Pendás AM, Francisco E, Blanco M (2007) Phys Chem Chem Phys 9(9):1087CrossRefGoogle Scholar
  19. 19.
    Francisco E, Pendás AM, Blanco M (2009) J Chem Phys 131(12):124125CrossRefGoogle Scholar
  20. 20.
    Ponec R, Gironés X (2002) J Phys Chem A 106(41):9506CrossRefGoogle Scholar
  21. 21.
    Ponec R, Yuzhakov G, Carbó-Dorca R (2003) J Comput Chem 24(15):1829CrossRefGoogle Scholar
  22. 22.
    Ponec R, Yuzhakov G, Sundberg MR (2005) J Comput Chem 26(5):447CrossRefGoogle Scholar
  23. 23.
    Ponec R, Cooper DL (2007) J Phys Chem A 111(44):11294CrossRefGoogle Scholar
  24. 24.
    Ponec R, Lendvay G, Chaves J (2008) J Comput Chem 29(9):1387CrossRefGoogle Scholar
  25. 25.
    Ponec R, Feixas F (2009) J Phys Chem A 113(29):8394CrossRefGoogle Scholar
  26. 26.
    Ponec R, Ramos-Cordoba E, Salvador P (2013) J Phys Chem A 117(9):1975CrossRefGoogle Scholar
  27. 27.
    Cooper DL, Ponec R, Kohout M (2016) Mol Phys 114(7-8):1270CrossRefGoogle Scholar
  28. 28.
    Giambiagi M, de Giambiagi MS, Mundim KC (1990) Struct Chem 1(5):423CrossRefGoogle Scholar
  29. 29.
    Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18(8):706CrossRefGoogle Scholar
  30. 30.
    Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29(10):1543CrossRefGoogle Scholar
  31. 31.
    Francisco E, Pendás AM, Costales A (2014) Phys Chem Chem Phys 16(10):4586CrossRefGoogle Scholar
  32. 32.
    Poater J, Sola M, Duran M, Fradera X (2002) Theor Chem Accounts 107(6):362CrossRefGoogle Scholar
  33. 33.
    Outeiral C, Vincent MA, Pendás AM, Popelier PL (2018) Chemical ScienceGoogle Scholar
  34. 34.
    Ponec R, Cooper DL, Savin A (2008) Chem Eur J 14(11):3338CrossRefGoogle Scholar
  35. 35.
    Kutzelnigg W (2003). In: Rychlewski J (ed) Explicitly correlated wave functions in chemistry and physics: Theory and applications, SpringerGoogle Scholar
  36. 36.
    Frenking G, Krapp A (2007) J Comput Chem 28(1):15CrossRefGoogle Scholar
  37. 37.
    Pendás AM, Francisco E (2018) Phys Chem Chem Phys 20(18):12368CrossRefGoogle Scholar
  38. 38.
    Wang YG, Matta C, Werstiuk NH (2003) J Comput Chem 24(14):1720CrossRefGoogle Scholar
  39. 39.
    Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Phys Chem Chem Phys 13 (46):20690CrossRefGoogle Scholar
  40. 40.
    Poater J, Duran M, Solà M, Silvi B (2005) Chem Rev 105(10):3911CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryGhent UniversityGhentBelgium

Personalised recommendations