Advertisement

Journal of Molecular Modeling

, 24:306 | Cite as

Zintl superalkalis as building blocks of supersalts

  • G. Naaresh Reddy
  • A. Vijay Kumar
  • Rakesh Parida
  • Arindam Chakraborty
  • Santanab Giri
Original Paper
  • 73 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

Alkali metal cations and halogen anions are common components of ionic salts. Recently, a new class of salts termed supersalts was reported, each of which contains a superalkali and a superhalogen that mimic an alkali metal cation and a halogen anion, respectively. Using three different functionals, namely B3LYP, wB97X, and M06-2X, we theoretically investigated a new subset of supersalts composed of Zintl-based superalkalis and inorganic superhalogens via computational modeling. The calculated dipole moment and first-order hyperpolarizability values for these supersalts indicate that they present nonlinear optical (NLO) behavior. The supersalts of Zintl superalkalis (Ca2P7, Sr2P7, Ba2P7) and superhalogens (BF4, BeF3, NO3) studied here were found to be stable.

Graphical Abstract

Using the first-principles calculation, a new class of supersalts by using Zintl-based superalkalis and inorganic superhalogens has been designed.

Keywords

Zintl ion Ionization energy Superalkali Electron affinity Superhalogens DFT Supersalts 

Notes

Acknowledgements

This work is supported by a Department of Science and Technology INSPIRE award (no. IFA14-CH-151) from the Government of India. Utilization of the resources and computational facilities of the National Institute of Technology Rourkela are also acknowledged.

Supplementary material

894_2018_3806_MOESM1_ESM.docx (9.9 mb)
ESM 1 (DOCX 9.91 mb)

References

  1. 1.
    Jena P (2013) J Phys Chem Lett 4:1432Google Scholar
  2. 2.
    Gutsev GL, Boldyrev AI (1982) Chem Phys Lett 92:262Google Scholar
  3. 3.
    Gutsev GL, Boldyrev AI (1981) Chem Phys 56:277Google Scholar
  4. 4.
    Rehm E, Boldyrev AI, Schleyer PVR (1992) Inorg Chem 31:4834Google Scholar
  5. 5.
    Wu CH, Kudo H, Ihle HR (1979) J Chem Phys 70:1815Google Scholar
  6. 6.
    Veljkovic M, Neskovic O, Zmbov KF, Miletic M (1996) Rapid Commun Mass Spectrom 10:619Google Scholar
  7. 7.
    Neskovic O, Veljkovic M, Velickovic S, Petkovska LJ, Peric-Grujic A (2003) Rapid Commun Mass Spectrom 17:212Google Scholar
  8. 8.
    Yokoyama K, Haketa N, Hasimoto M, Furukawa K, Tanaka H, Kudo H (2000) Chem Phys Lett 320:645Google Scholar
  9. 9.
    Yokoyama K, Haketa N, Tanaka H, Furukawa K, Kudo H (2000) Chem Phys Lett 330:339Google Scholar
  10. 10.
    Hou N, Li Y, Wu D, Li ZR (2013) Chem Phys Lett 575:32Google Scholar
  11. 11.
    Tong J, Li Y, Wu D, Li ZR, Huang XR (2011) J Phys Chem A 115:2041Google Scholar
  12. 12.
    Tong J, Li Y, Wu D, Wu ZJ (2012) Inorg Chem 51:6081Google Scholar
  13. 13.
    Tong J, Wu Z, Li Y, Wu D (2013) Dalton Trans 42:577Google Scholar
  14. 14.
    Sun WM, Li Y, Wu D, Li ZR (2013) J Phys Chem C 117:24618Google Scholar
  15. 15.
    Wang XB, Ding CF, Wang LS, Boldyrev AI (1999) J Chem Phys 110:4763Google Scholar
  16. 16.
    Wu MM, Wang H, Ko YJ, Kandalam AK, Kiran B, Wang Q, Sun Q, Bowen KH, Jena P (2011) Angew Chem Int Ed 50:2568Google Scholar
  17. 17.
    Pathak B, Samanta D, Ahuja R, Jena P (2011) ChemPhysChem 12:2422Google Scholar
  18. 18.
    Gutsev GL, Rao BK, Jena P, Wang XB, Wang LS (1999) Chem Phys Lett 312:598Google Scholar
  19. 19.
    Giri S, Behera S, Jena P (2014) J Phys Chem A 118:638Google Scholar
  20. 20.
    Srivastava AK, Misra N (2014) New J Chem 38:2890Google Scholar
  21. 21.
    Ulime EA, Pogrebnoi AM, Pogrebnaya TP (2017) Curr J Appl Sci Technol 22:1Google Scholar
  22. 22.
    Zintl E, Morawietz W (1938) Z Anorg Allg Chem 236:372Google Scholar
  23. 23.
    Jansen M (1977) Z Anorg Allg Chem 435:13Google Scholar
  24. 24.
    Khanna SN, Jena P (1992) Phys Rev Lett 69:1664Google Scholar
  25. 25.
    Khanna SN, Jena P (1995) Phys Rev B Condens Matter Mater Phys 51:13705Google Scholar
  26. 26.
    Li Y, Wu D, Li ZR (2008) Inorg Chem 47:9773Google Scholar
  27. 27.
    Yang H, Li Y, Wu D, Li ZR (2012) Int J Quantum Chem 112:770Google Scholar
  28. 28.
    Srivastava AK, Misra N (2014) Mol Phys 112:2621Google Scholar
  29. 29.
    Jing YQ, Li ZR, Wu D, Li Y, Wang BQ, Gu FL, Aoki Y (2006) ChemPhysChem 7:1759Google Scholar
  30. 30.
    Giri S, Reddy GN, Jena P (2016) J Phys Chem Lett 7:800Google Scholar
  31. 31.
    Chapman DJ, Sevov SC (2008) Inorg Chem 47:6009Google Scholar
  32. 32.
    Ugrinov A, Sevov SC (2003) J Am Chem Soc 125:14059Google Scholar
  33. 33.
    Knapp CM, Large JS, Rees NH, Goicoechea JM (2011) Dalton Trans 40:735Google Scholar
  34. 34.
    Knapp C, Zhou B, Denning MS, Rees NH, Goicoechea JM (2010) Dalton Trans 39:426Google Scholar
  35. 35.
    Feierabend M, Von-Hänisch C (2014) Chem Commun 50:4416Google Scholar
  36. 36.
    Zhou B, Denning MS, Jones C, Goicoechea JM (2009) Dalton Trans 9:1571Google Scholar
  37. 37.
    Dolyniuk JA, Kovnir K (2013) Crystals 3:431Google Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785Google Scholar
  40. 40.
    Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106Google Scholar
  41. 41.
    Zhao Y, Truhlar DG (2006) Theor Chem Accounts 120:215Google Scholar
  42. 42.
    Weigand F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297Google Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  44. 44.
    Boyle NMO, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839Google Scholar
  45. 45.
    Read AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899Google Scholar
  46. 46.
    Kleinman DA (1962) Phys Rev 126:1977Google Scholar
  47. 47.
    Adant C, Dupuis M, Bredas JL (1995) Int J Quantum Chem 56:497Google Scholar
  48. 48.
    Turbervill RS, Goicoechea PJM (2012) Chem Commun 48:1470Google Scholar
  49. 49.
    Behera S, Samanta D, Jena P (2013) J Phys Chem A 117:5428Google Scholar
  50. 50.
    Paduani C, Jena P (2012) J Phys Chem A 116:1469Google Scholar
  51. 51.
    Saravana Kumar G, Murugakoothan P (2015) AIP Conf Proc 1665:100006Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of Technology RourkelaOdishaIndia
  2. 2.Department of ChemistryUtkal UniversityOdishaIndia
  3. 3.Faculty of ScienceJatragachi Pranabananda High SchoolKolkataIndia

Personalised recommendations