Advertisement

Scavenging of hydroxyl, methoxy, and nitrogen dioxide free radicals by some methylated isoflavones

  • Manish Kumar Tiwari
  • Phool Chand Mishra
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

Free radicals can be scavenged from biological systems by genistein, daidzein, and their methyl derivatives through hydrogen atom transfer (HAT), single-electron transfer (SET), and sequential proton-loss electron-transfer (SPLET) mechanisms. Reactions between these derivatives and the free radicals OH., OCH3., and NO2. via the HAT mechanism in the gas phase were studied using the transition state theory within the framework of DFT. Solvation of all the species and complexes involved in the HAT reactions in aqueous media was treated by performing single point energy calculations using the polarizable continuum model (PCM). The SET and SPLET mechanisms for the above reactions were also considered by applying the Marcus theory of electron transfer, and were found to be quite sensitive to geometry and solvation. Therefore, the geometries of all the species involved in the SET and SPLET mechanisms were fully optimized in aqueous media. The calculated barrier energies and rate constants of the HAT-based scavenging reactions showed that the OH group of the B ring in genistein, daidzein, and their methyl derivatives plays a major role in the scavenging of free radicals, and the role of this OH group in the HAT-based free-radical scavenging decreases in the following order: OH. > OCH3. > NO2.. The SPLET mechanism was found to be an important mechanism in these free-radical scavenging reactions, whereas the SET mechanism was not important in this context.

Keywords

Isoflavone Genistein Daidzein Methyl derivatives Antioxidant Free radicals 

Notes

Acknowledgements

One of the authors (PCM) is thankful to the National Academy of Sciences, India (NASI) for the award of a Senior Scientist Fellowship along with the related financial support.

Supplementary material

894_2018_3805_MOESM1_ESM.docx (8.8 mb)
ESM 1 (DOCX 8999 kb)

References

  1. 1.
    Fridovich I (1978) Science 201:875–880Google Scholar
  2. 2.
    Halliwell B, Gutteridge JM (1984) Biochem J 219:1–14Google Scholar
  3. 3.
    Darley-Usmar V, Halliwell B (1996) Pharm Res 13:649–662Google Scholar
  4. 4.
    Yarkony DR, Schaefer HF, Rothenberg S (1974) J Am Chem Soc 96:656–659Google Scholar
  5. 5.
    Niles JC, Wishnok JS, Tannenbaum SR (2006) Nitric Oxide 14:109–121Google Scholar
  6. 6.
    Sodum RS, Fiala ES (2001) Chem Res Toxicol 14:438–450Google Scholar
  7. 7.
    Pavlovic R, Santaniello E (2007) J Pharm Pharmacol 59:1687–1695Google Scholar
  8. 8.
    Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089–1108Google Scholar
  9. 9.
    Sonntag V (2006) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, BerlinGoogle Scholar
  10. 10.
    Greenberg MM (2007) Org Biomol Chem 5:18–30Google Scholar
  11. 11.
    Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL, Sauvaigo S (1999) Mutat Res 424:9–21Google Scholar
  12. 12.
    Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1152Google Scholar
  13. 13.
    Halliwell B (1999) Mutat Res 443:37–52Google Scholar
  14. 14.
    Simons J (2006) Acc Chem Res 39:772–779Google Scholar
  15. 15.
    Mishina Y, Duguid EM, He C (2006) Chem Rev 106:215–232Google Scholar
  16. 16.
    Tiwari MK, Mishra PC (2013) J Mol Model 19:5445–5456Google Scholar
  17. 17.
    Tiwari MK, Mishra PC (2016) J Chem Sci 128:1199–1210Google Scholar
  18. 18.
    Tiwari MK, Mishra PC (2016) RSC Adv 6:86650–86662Google Scholar
  19. 19.
    Tiwari MK, Jena NR, Mishra PC (2018) J Chem Sci 130:105–121Google Scholar
  20. 20.
    Gulçin I (2012) Arch Toxicol 86:345–391Google Scholar
  21. 21.
    Craft BD, Kerrihard AL, Amarowicz R, Pegg RB (2012) Compr Rev Food Sci Food Saf 11:148–173Google Scholar
  22. 22.
    Setchell KD (1998) Am J Clin Nutr 68:1333S–1346SGoogle Scholar
  23. 23.
    Ososki AL, Kennelly EJ (2003) Phytother Res 17:845–869Google Scholar
  24. 24.
    Anderson JJB, Anthony M, Messina M, Garner SC (1999) Nutr Res Rev 12:75–116Google Scholar
  25. 25.
    Adlercreutz H, Mazur W, Bartels P, Elomaa VV, Watanabe S, Wahala K, Landstrom M, Lundin E, Bergh A, Damber JE, Aman P, Widmark A, Johansson A, Zhang JX, Hallmans GJ (2000) J Nutr 130:658–659Google Scholar
  26. 26.
    de Lemos ML (2001) Ann Pharmacother 35:1118–1121Google Scholar
  27. 27.
    Hao A, Zhang Y, Zhang H, Liu Y, Xu X (2013) J Pharm Pharmacol 7:199Google Scholar
  28. 28.
    Davis JN, Kucuk O, Sarkar FH (1999) Nutr Cancer 35:167–174Google Scholar
  29. 29.
    Davis JN, Kucuk O, Djuric Z, Sarkar FH (2001) Free Radic Biol Med 30:1293–1302Google Scholar
  30. 30.
    Kurzer MS, Xu X (1997) Annu Rev Nutr 17:353–381Google Scholar
  31. 31.
    Yamashita Y, Kawada SZ, Nakaro H (1990) Biochem Pharmacol 39:737–744Google Scholar
  32. 32.
    Okura A, Arakawa H, Oka H, Yoshinari T, Monnden Y (1988) Biochem Biophys Res Commun 157:183–189Google Scholar
  33. 33.
    Setchell KDR, Cassidy A (1999) J Nutr 129:758S–767SGoogle Scholar
  34. 34.
    Agnihotri N, Mishra PC (2011) J Phys Chem A 115:14221–14232Google Scholar
  35. 35.
    Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173–1183Google Scholar
  36. 36.
    Lee SH, Baek K, Lee JE, Kim BG (2016) Biotechnol Bioeng 113:735–743Google Scholar
  37. 37.
    Chiang CM, Wang DS, Chang TS (2016) Molecules 21:1723–1732Google Scholar
  38. 38.
    Chiang CM, Ding HY, Tsai YT, Chang TS (2015) Int J Mol Sci 16:27816–27823Google Scholar
  39. 39.
    Marcus RA (1964) Annu Rev Phys Chem 15:155–196Google Scholar
  40. 40.
    Marcus RA (1993) Rev Mod Phys 65:599–610Google Scholar
  41. 41.
    Marcus RA (1997) Pure Appl Chem 69:13–30Google Scholar
  42. 42.
    Litwinienko G, Ingold KU (2003) J Org Chem 68:3433–3438Google Scholar
  43. 43.
    Litwinienko G, Ingold KU (2004) J Org Chem 69:5888–5896Google Scholar
  44. 44.
    Litwinienko G, Ingold KU (2005) J Org Chem 70:8982–8990Google Scholar
  45. 45.
    Singh H, Singh S, Srivastava A, Tandon P, Bharti P, Kumar S, Maurya R (2014) Spectrochim Acta A 120:405–415Google Scholar
  46. 46.
    Zhao Y, Truhlar DG (2006) J Phys Chem A 110:5121–5129Google Scholar
  47. 47.
    Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849–1868Google Scholar
  48. 48.
    Hariharan PC, Pople JA (1972) Chem Phys Lett 16:217–219Google Scholar
  49. 49.
    Miertus S, Tomasi J (1982) Chem Phys 65:239–245Google Scholar
  50. 50.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129Google Scholar
  51. 51.
    Nelsen SF, Blackstock SC, Kim Y (1987) J Am Chem Soc 109:677–682Google Scholar
  52. 52.
    Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, O’Konek JJ (2006) J Phys Chem A 110:11665–11676Google Scholar
  53. 53.
    Laidler KJ (2004) In: Chemical kinetics, 3rd edn. Pearson Education (Singapore) Pte Ltd. (Indian Branch), PatparganjGoogle Scholar
  54. 54.
    Skodje RT, Truhlar DG (1981) J Phys Chem 34:624–628Google Scholar
  55. 55.
    Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  56. 56.
    Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee MissionGoogle Scholar
  57. 57.
    Lengyel J, Rimarcik J, Vaganek A, Klein E (2013) Phys Chem Chem Phys 15:10895–10903Google Scholar
  58. 58.
    Zhang HY, Wang LF, Sun YM (2003) Bioorg Med Chem Lett 13:909Google Scholar
  59. 59.
    Zielonka J, Gebicki J, Grynkiewicz G (2003) Free Radic Biol Med 35:958Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Science, Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations