Advertisement

Can molecular and atomic descriptors predict the electrophilicity of Michael acceptors?

  • Guillaume Hoffmann
  • Vincent Tognetti
  • Laurent Joubert
Original Paper
  • 49 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

In this paper, we assess the ability of various intrinsic molecular and atomic descriptors, grounded in the conceptual density functional theory and the quantum theory of atoms-in-molecules frameworks, to predict the electrophilicity of Michael acceptors, which are fundamental organic reagents involved in the formation of carbon–carbon bonds. To this aim, linear and multilinear regressions between these theoretical properties and the experimental values gathered in Mayr-Patz’ scale were performed. The relevance of quantum chemical descriptors are then discussed.

Keywords

Mayr’s electrophilicity scale Michael additions Molecular descriptors Atomic descriptors Reactivity indices Conceptual DFT Quantum theory of atoms-in-molecules (QTAIM) 

Notes

Acknowledgments

The authors would like to gratefully acknowledge the LABEX SynOrg and the Normandy Region for funding and support, and the Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN) high-performance computing facility. It is our pleasure to contribute to this special issue honoring the fundamental contributions made in chemistry by Prof. Chattaraj, a pioneer in conceptual density functional theory.

Supplementary material

894_2018_3802_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1086 kb)

References

  1. 1.
    Gardner Swain C, Scott CB (1953) Quantitative correlation of relative rates. Comparison of hydroxide ion with other nucleophilic reagents toward alkyl halides, esters, epoxides and acyl halides. J Am Chem Soc 75:141–147.  https://doi.org/10.1021/ja01097a041 CrossRefGoogle Scholar
  2. 2.
    Ritchie D (1986) Cation-anion combination reactions. 26. A review. Can J Chem 64:2239–2250.  https://doi.org/10.1139/v86-370 CrossRefGoogle Scholar
  3. 3.
    Heo CKM, Bunting JW (1994) Nucleophilicity towards a vinylic carbon atom: Rate constants for the addition of amines to the 1-methyl-4-vinylpyridinium cation in aqueous solution. J Chem Soc Perkin Trans 2:2279–2290CrossRefGoogle Scholar
  4. 4.
    Mayr H, Patz M (1994) Scales of nucleophilicity and electrophilicity: A system for ordering polar organic and organometallic reactions. Angew Chem Int Ed Eng 33:938–957.  https://doi.org/10.1002/anie.199409381 CrossRefGoogle Scholar
  5. 5.
    Lucius R, Loos R, Mayr H (2002) Kinetic studies of carbocation–carbanion combinations: Key to a general concept of polar organic reactivity. Angew Chem Int Ed 41:91–95.  https://doi.org/10.1002/1521-3773(20020104)41:1<91::AID-ANIE91>3.0.CO;2-P CrossRefGoogle Scholar
  6. 6.
    Mayr H, Bug T, Gotta MF et al (2001) Reference scales for the characterization of cationic electrophiles and neutral nucleophiles. J Am Chem Soc 123:9500–9512.  https://doi.org/10.1021/ja010890y CrossRefPubMedGoogle Scholar
  7. 7.
    http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/. Mayr’s Database of Reactivity Parameters
  8. 8.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154.  https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A CrossRefGoogle Scholar
  9. 9.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874.  https://doi.org/10.1021/cr990029p CrossRefPubMedGoogle Scholar
  10. 10.
    Pereira F, Latino DARS, Aires-De-Sousa J (2011) Estimation of mayr electrophilicity with a quantitative structure-property relationship approach using empirical and DFT descriptors. J Organomet Chem 76:9312–9319.  https://doi.org/10.1021/jo201562f CrossRefGoogle Scholar
  11. 11.
    González MM, Cárdenas C, Rodríguez JI et al (2018) Quantitative electrophilicity measures. Wuli Huaxue Xuebao/Acta Phys - Chim Sin 34:662–674.  https://doi.org/10.3866/PKU.WHXB201711021 CrossRefGoogle Scholar
  12. 12.
    Pérez P, Toro-Labbé A, Aizman A, Contreras R (2002) Comparison between experimental and theoretical scales of electrophilicity in benzhydryl cations. J Organomet Chem 67:4747–4752.  https://doi.org/10.1021/jo020255q CrossRefGoogle Scholar
  13. 13.
    Tognetti V, Morell C, Joubert L (2015) Atomic electronegativities in molecules. Chem Phys Lett 635:111–115.  https://doi.org/10.1016/j.cplett.2015.05.057 CrossRefGoogle Scholar
  14. 14.
    Liu S, Rong C, Lu T (2014) Information conservation principle determines electrophilicity, nucleophilicity, and regioselectivity. J Phys Chem A 118:3698–3704.  https://doi.org/10.1021/jp5032702 CrossRefPubMedGoogle Scholar
  15. 15.
    Mayr H, Ofial AR (2015) A quantitative approach to polar organic reactivity. SAR QSAR Environ Res 26:619–646.  https://doi.org/10.1080/1062936X.2015.1078409 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhuo LG, Liao W, Yu ZX (2012) A frontier molecular orbital theory approach to understanding the Mayr equation and to quantifying nucleophilicity and electrophilicity by using HOMO and LUMO energies. Asian J Org Chem 1:336–334.  https://doi.org/10.1002/ajoc.201200103 CrossRefGoogle Scholar
  17. 17.
    Wang C, Fu Y, Guo QX, Liu L (2010) First-principles prediction of nucleophilicity parameters for π nucleophiles: Implications for mechanistic origin of Mayr’s equation. Chem A Eur J 16:2586–2598.  https://doi.org/10.1002/chem.200902484 CrossRefGoogle Scholar
  18. 18.
    Chamorro E, Melin J (2015) On the intrinsic reactivity index for electrophilicity/nucleophilicity responses. J Mol Model 21:53.  https://doi.org/10.1007/s00894-015-2608-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Kiyooka SI, Kaneno D, Fujiyama R (2013) Intrinsic reactivity index as a single scale directed toward both electrophilicity and nucleophilicity using frontier molecular orbitals. Tetrahedron 69:4247–4258.  https://doi.org/10.1016/j.tet.2013.03.083 CrossRefGoogle Scholar
  20. 20.
    Tognetti V, Morell C, Joubert L (2015) Quantifying electro/nucleophilicity by partitioning the dual descriptor. J Comput Chem 36:649–659.  https://doi.org/10.1002/jcc.23840 CrossRefPubMedGoogle Scholar
  21. 21.
    Tognetti V, Joubert L (2017) On atoms-in-molecules energies from Kohn–Sham calculations. ChemPhysChem 18:2675–2687.  https://doi.org/10.1002/cphc.201700637 CrossRefPubMedGoogle Scholar
  22. 22.
    Dau-Schmidt J-P, Mayr H (1994) Relative reactivities of alkyl chlorides under Friedel-Crafts conditions. Chem Ber 127:205–212.  https://doi.org/10.1002/cber.19941270129 CrossRefGoogle Scholar
  23. 23.
    Domingo LR, Pérez P, Contreras R (2004) Reactivity of the carbon-carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron 60:6585–6591.  https://doi.org/10.1016/j.tet.2004.06.003 CrossRefGoogle Scholar
  24. 24.
    Carey FA, Sundberg RJ (2007) Advanced organic chemistry Part A: structure and mechanisms. Springer, New YorkGoogle Scholar
  25. 25.
    Allgäuer DS, Jangra H, Asahara H et al (2017) Quantification and theoretical analysis of the electrophilicities of Michael acceptors. J Am Chem Soc 139:13318–13329.  https://doi.org/10.1021/jacs.7b05106 CrossRefPubMedGoogle Scholar
  26. 26.
    Bader RFW (1990) Atoms in molecules: A quantum theory. Oxford University Press, OxfordGoogle Scholar
  27. 27.
    Popelier PLA (2000) Atoms in molecules: An Introduction. Pearson Education, HarlowCrossRefGoogle Scholar
  28. 28.
    Aliyenne A, Pin F, Nimbarte VD et al (2016) Bi (OTf)3-catalysed access to 2,3-substituted isoindolinones and tricyclic N,O-acetals by trapping of bis-N-acyliminium species in a tandem process. Eur J Org Chem 2016:3592–3602.  https://doi.org/10.1002/ejoc.201600530 CrossRefGoogle Scholar
  29. 29.
    Tognetti V, Boulangé A, Peixoto PA et al (2014) A theoretical study on diastereoselective oxidative dearomatization by iodoxybenzoic acid. J Mol Model 20:1–10.  https://doi.org/10.1007/s00894-014-2342-1 CrossRefGoogle Scholar
  30. 30.
    Falkowska E, Laurent MY, Tognetti V et al (2015) Synthesis of SF5-substituted isoxazolidines using 1,3-dipolar cycloaddition reactions of nitrones with pentafluorosulfanyl acrylic esters and amides. Tetrahedron 71:8067–8076.  https://doi.org/10.1016/j.tet.2015.08.050 CrossRefGoogle Scholar
  31. 31.
    Tognetti V, Guégan F, Luneau D et al (2017) Structural effects in octahedral carbonyl complexes: an atoms-in-molecules study. Theor Chem Accounts 136:1–12.  https://doi.org/10.1007/s00214-017-2116-9 CrossRefGoogle Scholar
  32. 32.
    Inostroza-Rivera R, Yahia-Ouahmed M, Tognetti V et al (2015) Atomic decomposition of conceptual DFT descriptors: application to proton transfer reactions. Phys Chem Chem Phys 17:17797–17808.  https://doi.org/10.1039/C5CP01515D CrossRefPubMedGoogle Scholar
  33. 33.
    Guégan F, Tognetti V, Joubert L et al (2016) Towards the first theoretical scale of the trans effect in octahedral complexes. Phys Chem Chem Phys 18:982–990.  https://doi.org/10.1039/C5CP04982B CrossRefPubMedGoogle Scholar
  34. 34.
    Tognetti V, Bouzbouz S, Joubert L (2017) A theoretical study of the diastereoselective allylation of aldehydes with new chiral allylsilanes. J Mol Model 23:5.  https://doi.org/10.1007/s00894-016-3173-z CrossRefPubMedGoogle Scholar
  35. 35.
    Jouanno LA, Di Mascio V, Tognetti V et al (2014) Metal-free decarboxylative Hetero-Diels-Alder synthesis of 3-hydroxypyridines: A rapid access to N-fused bicyclic hydroxypiperidine scaffolds. J Organomet Chem 79:1303–1319.  https://doi.org/10.1021/jo402729a CrossRefGoogle Scholar
  36. 36.
    Zielinski F, Tognetti V, Joubert L (2013) A theoretical study on the gas-phase protonation of pyridine and phosphinine derivatives. J Mol Model 19:4049–4058.  https://doi.org/10.1007/s00894-013-1925-6 CrossRefPubMedGoogle Scholar
  37. 37.
    Falkowska E, Tognetti V, Joubert L et al (2015) First efficient synthesis of SF 5-substituted pyrrolidines using 1,3-dipolar cycloaddition of azomethine ylides with pentafluorosulfanyl-substituted acrylic esters and amides. RSC Adv 5:6864–6868.  https://doi.org/10.1039/C4RA14075C CrossRefGoogle Scholar
  38. 38.
    Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856.  https://doi.org/10.1021/ja00005a073 CrossRefGoogle Scholar
  39. 39.
    Chattaraj PK (2009) Chemical reactivity theory. CRC, Boca RatonCrossRefGoogle Scholar
  40. 40.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: The density functional viewpoint. J Chem Phys 68:3801–3807.  https://doi.org/10.1063/1.436185 CrossRefGoogle Scholar
  41. 41.
    Parr RG, Pearson RG (1983) Absolute hardness: Companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516.  https://doi.org/10.1021/ja00364a005 CrossRefGoogle Scholar
  42. 42.
    Geerlings P, De Proft F (2008) Conceptual DFT: the chemical relevance of higher response functions. Phys Chem Chem Phys 10:3028.  https://doi.org/10.1039/b717671f CrossRefPubMedGoogle Scholar
  43. 43.
    Morell C, Grand A, Toro-Labbé A, Chermette H (2013) Is hyper-hardness more chemically relevant than expected? J Mol Model 19:2893–2900.  https://doi.org/10.1007/s00894-013-1778-z CrossRefPubMedGoogle Scholar
  44. 44.
    Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050.  https://doi.org/10.1021/ja00326a036 CrossRefGoogle Scholar
  45. 45.
    Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212.  https://doi.org/10.1021/jp046577a CrossRefPubMedGoogle Scholar
  46. 46.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694.  https://doi.org/10.1103/PhysRevLett.49.1691 CrossRefGoogle Scholar
  47. 47.
    Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924.  https://doi.org/10.1021/ja983494x CrossRefGoogle Scholar
  48. 48.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity Index. Chem Rev 106:2065–2091.  https://doi.org/10.1021/cr040109f CrossRefPubMedGoogle Scholar
  49. 49.
    Padmanabhan J, Parthasarathi R, Elango M et al (2007) Multiphilic descriptor for chemical reactivity and selectivity. J Phys Chem A 111:9130–9138.  https://doi.org/10.1021/jp0718909 CrossRefPubMedGoogle Scholar
  50. 50.
    Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: A unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975.  https://doi.org/10.1021/jp034707u CrossRefGoogle Scholar
  51. 51.
    Parthasarathi R, Padmanabhan J, Elango M et al (2004) Intermolecular reactivity through the generalized philicity concept. Chem Phys Lett 394:225–230.  https://doi.org/10.1016/j.cplett.2004.07.002 CrossRefGoogle Scholar
  52. 52.
    Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726.  https://doi.org/10.1073/pnas.82.20.6723 CrossRefPubMedGoogle Scholar
  53. 53.
    Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: Carbonyl compounds. J Phys Chem A 102:3746–3755.  https://doi.org/10.1021/jp973450v CrossRefGoogle Scholar
  54. 54.
    Morell C, Gázquez JL, Vela A et al (2014) Revisiting electroaccepting and electrodonating powers: proposals for local electrophilicity and local nucleophilicity descriptors. Phys Chem Chem Phys 16:26832–26842.  https://doi.org/10.1039/C4CP03167A CrossRefPubMedGoogle Scholar
  55. 55.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138.  https://doi.org/10.1007/BF00549096 CrossRefGoogle Scholar
  56. 56.
    Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 88:2547–2553.  https://doi.org/10.1063/1.454033 CrossRefGoogle Scholar
  57. 57.
    Li L, Parr RG (1986) The atom in a molecule: A density matrix approach. J Chem Phys 84:1704–1711.  https://doi.org/10.1063/1.450468 CrossRefGoogle Scholar
  58. 58.
    Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:144101.  https://doi.org/10.1063/1.2715563 CrossRefGoogle Scholar
  59. 59.
    Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711.  https://doi.org/10.1021/ja00279a008 CrossRefPubMedGoogle Scholar
  60. 60.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746.  https://doi.org/10.1063/1.449486 CrossRefGoogle Scholar
  61. 61.
    Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I J Chem Phys 23:1833–1840.  https://doi.org/10.1063/1.1740588 CrossRefGoogle Scholar
  62. 62.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373.  https://doi.org/10.1002/jcc.540110311 CrossRefGoogle Scholar
  63. 63.
    Liu S (2007) Steric effect: A quantitative description from density functional theory. J Chem Phys 126:244103.  https://doi.org/10.1063/1.2747247 CrossRefPubMedGoogle Scholar
  64. 64.
    Tognetti V, Joubert L (2014) Density functional theory and Bader’s atoms-in-molecules theory: Towards a vivid dialogue. Phys Chem Chem Phys 16:14539–14550.  https://doi.org/10.1039/c3cp55526g CrossRefPubMedGoogle Scholar
  65. 65.
    Patrikeev L, Joubert L, Tognetti V (2016) Atomic decomposition of Kohn-Sham molecular energies: The kinetic energy component. Mol Phys 114:1285–1296.  https://doi.org/10.1080/00268976.2015.1113314 CrossRefGoogle Scholar
  66. 66.
    Chamorro E, Perez P (2005) Condensed-to-atoms electronic Fukui functions within the framework of spin polarized density-functional theory. J Chem Phys 123:1–10.  https://doi.org/10.1063/1.2033689 CrossRefGoogle Scholar
  67. 67.
    Contreras RR, Fuentealba P, Galván M, Pérez P (1999) A direct evaluation of regional Fukui functions in molecules. Chem Phys Lett 304:405–413.  https://doi.org/10.1016/S0009-2614(99)00325-5 CrossRefGoogle Scholar
  68. 68.
    Li Z, Jangra H, Chen Q et al (2018) Kinetics and mechanism of oxirane formation by Darzens condensation of ketones: Quantification of the electrophilicities of ketones. J Am Chem Soc jacs.8b01657.  https://doi.org/10.1021/jacs.8b01657 CrossRefPubMedGoogle Scholar
  69. 69.
    Demir S, Engin MS, Çay S et al (2017) DFT and conceptual-DFT assessment on selective tertiary amine functionalized calix[4]arene-anion interaction. Comput Theor Chem 1117:292–298.  https://doi.org/10.1016/j.comptc.2017.08.008 CrossRefGoogle Scholar
  70. 70.
    Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47:2462–2474.  https://doi.org/10.1021/Ci6005646 CrossRefPubMedGoogle Scholar
  71. 71.
    Frisch MJ, Trucks GW, Schlegel HB et al Gaussian 09 Revision D.01. Gaussian 09 Revis. D.01. Gaussian, Inc., WallingfordGoogle Scholar
  72. 72.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093.  https://doi.org/10.1021/cr9904009 CrossRefPubMedGoogle Scholar
  73. 73.
    Keith TA (2017) AIMAll (Version 17.11.14). TK Gristmill Software, Overland Park. aim.tkgristmill.com Google Scholar
  74. 74.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396.  https://doi.org/10.1021/jp810292n CrossRefPubMedGoogle Scholar
  75. 75.
    Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 1. Theory and derivation of a general-purpose reactivity indicator. J Chem Theory Comput 3:358–374.  https://doi.org/10.1021/ct600164j CrossRefPubMedGoogle Scholar
  76. 76.
    Anderson JSM, Ayers PW (2007) Predicting the reactivity of ambidentate nucleophiles and electrophiles using a single, general-purpose, reactivity indicator. Phys Chem Chem Phys 9:2371–2378.  https://doi.org/10.1039/b700960g CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.COBRA UMR 6014 & FR 3038, INSA Rouen, CNRSUniversité de Rouen NormandieMont St AignanFrance

Personalised recommendations