Advertisement

Journal of Molecular Modeling

, 24:232 | Cite as

In silico identification of inhibitors against Plasmodium falciparum histone deacetylase 1 (PfHDAC-1)

  • Amarjeet Kumar
  • Suman Kumar Dhar
  • Naidu Subbarao
Original Paper

Abstract

In erythrocytes, actively multiplying Plasmodium falciparum parasites exhibit a unique signature of virulence associated histone modifications, thereby epigenetically regulating the expression of the majority of genes. Histone acetylation is one such modification, effectuated and maintained by the dynamic interplay of two functionally antagonist enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Their inhibition leads to hypo/hyperacetylation and is known to be deleterious for P. falciparum, and hence they have become attractive molecular targets to design novel antimalarials. Many compounds, including four Food and Drug Administration (FDA) approved drugs, have been developed so far to inhibit HDAC activity but are not suitable to treat malaria as they lack selectivity and cause cytotoxicity in mammalian cells. In this study, we used comparative modeling and molecular docking to establish different binding modes of nonselective and selective compounds in the PfHDAC-1 (a class I HDAC protein in P. falciparum) active site and identified the involvement of active site nonidentical residues in binding of selective compounds. Further, we have applied virtual screening with precise selection criteria and molecular dynamics simulation to identify novel potential inhibitors against PfHDAC-1. We report 20 compounds (10 from ChEMBL and 10 from analogues compound library) bearing seven scaffolds having better affinity toward PfHDAC-1. Sixteen of these compounds are known antimalarials with 14 having activity in the nanomolar range against various drug resistant and sensitive strains of P. falciparum. The cytotoxicity of these compounds against various human cell lines are reported at relatively higher concentration and hence can be used as potential PfHDAC-1 inhibitors in P. falciparum. These findings indeed show great potential for using the above molecules as prospective antimalarials.

Keywords

Plasmodium falciparum Epigenetics HDAC PfHDAC-1 Virtual Screening MD Simulation 

Abbreviations

HDAC

Histone deacetylase

HDACi

Histone deacetylase inhibitors

PfHDCA-1

Plasmodium falciparum HDAC 1

HsHDAC-1

Homo sapiens HDAC 1

HsHDAC-2

Homo sapiens HDAC 2

HsHDAC8

Homo sapiens HDAC 8

HTVS

High throughput virtual screening

nM

Nanomole

μM

Micromole

ns

Nanoseconds

ps

Picoseconds

Notes

Acknowledgments

We acknowledge Indian funding agencies DBT-COE, University Potential of Excellence (UPE-II, ID 28) by UGC, and DST-PURSE for their financial support. We wish to thank Schrödinger’s team India for providing three months academic license. Prof. Pradipta Bandyopadhyay, SCIS, JNU is acknowledged for allowing us to use AMBER16 package. AK acknowledges the Council of Scientific and Industrial Research (CSIR), India for providing scholarship.

Author contribution

Work design and conceptualization was done by AK, SKD, and NS. All the work was carried out by AK. Data analysis AK and NS. The manuscript was prepared and written by AK, SKD, and NS.

Supplementary material

894_2018_3761_MOESM1_ESM.docx (149 kb)
ESM 1 (DOCX 149 kb)
894_2018_3761_MOESM2_ESM.png (867 kb)
Figure S1 (PNG 867 kb)
894_2018_3761_MOESM3_ESM.png (1.3 mb)
Figure S2 (PNG 1374 kb)
894_2018_3761_MOESM4_ESM.png (1.5 mb)
Figure S3 (PNG 1584 kb)
894_2018_3761_MOESM5_ESM.png (927 kb)
Figure S4 (PNG 926 kb)
894_2018_3761_MOESM6_ESM.png (758 kb)
Figure S5 (PNG 757 kb)
894_2018_3761_MOESM7_ESM.png (2.9 mb)
Figure S6 (PNG 2954 kb)
894_2018_3761_MOESM8_ESM.png (866 kb)
Figure S7 (PNG 866 kb)

References

  1. 1.
    WHO (2016) World Malaria ReportGoogle Scholar
  2. 2.
    Rosenthal PJ, Rathod PK, Ndiaye D et al (2015) Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg 93:57–68.  https://doi.org/10.4269/ajtmh.15-0007
  3. 3.
    Flannery EL, Chatterjee AK, Winzeler EA (2013) Antimalarial drug discovery — approaches and progress towards new medicines. Nat Rev Microbiol 11:849–862.  https://doi.org/10.1038/nrmicro3138 CrossRefGoogle Scholar
  4. 4.
    Rosenthal PJ (2003) Antimalarial drug discovery: old and new approaches. J Exp Biol 206:3735–3744.  https://doi.org/10.1242/jeb.00589 CrossRefGoogle Scholar
  5. 5.
    Gupta AP, Chin WH, Zhu L et al (2013) Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. PLoS Pathog 9:e1003170.  https://doi.org/10.1371/journal.ppat.1003170
  6. 6.
    Cui L, Miao J (2010) Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Eukaryot Cell 9:1138–1149.  https://doi.org/10.1128/EC.00036-10
  7. 7.
    Doerig C, Rayner JC, Scherf A, Tobin AB (2015) Post-translational protein modifications in malaria parasites. Nat Rev Microbiol 13:160–172.  https://doi.org/10.1038/nrmicro3402 CrossRefGoogle Scholar
  8. 8.
    Deshmukh AS, Srivastava S, Dhar SK (2013) Plasmodium falciparum: epigenetic control of var gene regulation and disease. Subcell Biochem 61:659–682Google Scholar
  9. 9.
    Saraf A, Cervantes S, Bunnik EM et al (2016) Dynamic and combinatorial landscape of histone modifications during the intraerythrocytic developmental cycle of the malaria parasite. J Proteome Res 15:2787–2801.  https://doi.org/10.1021/acs.jproteome.6b00366
  10. 10.
    Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. CSH Perspect Biol 6:a018713–a018713.  https://doi.org/10.1101/cshperspect.a018713
  11. 11.
    Srivastava S, Bhowmick K, Chatterjee S et al (2014) Histone H3K9 acetylation level modulates gene expression and may affect parasite growth in human malaria parasite Plasmodium falciparum. FEBS J 281:5265–5278.  https://doi.org/10.1111/febs.13067
  12. 12.
    Kumar A, Bhowmick K, Vikramdeo KS et al (2017) Designing novel inhibitors against histone acetyltransferase (HAT: GCN5) of Plasmodium falciparum. Eur J Med Chem 138:26–37.  https://doi.org/10.1016/j.ejmech.2017.06.009
  13. 13.
    Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42.  https://doi.org/10.1038/nrg2485 CrossRefGoogle Scholar
  14. 14.
    Benedetti R, Conte M, Altucci L (2015) Targeting histone deacetylases in diseases: where are we? Antioxid Redox Signal 23:99–126.  https://doi.org/10.1089/ars.2013.5776
  15. 15.
    Moore D (2016) Panobinostat (Farydak): a novel option for the treatment of relapsed or relapsed and refractory multiple myeloma. Pharm Ther 41:296–300Google Scholar
  16. 16.
    Lee H-Z, Kwitkowski VE, Del Valle PL et al (2015) FDA approval: belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin Cancer Res 21:2666–2670.  https://doi.org/10.1158/1078-0432.CCR-14-3119
  17. 17.
    Mann BS, Johnson JR, Cohen MH et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252.  https://doi.org/10.1634/theoncologist.12-10-1247
  18. 18.
    Barbarotta L, Hurley K (2015) Romidepsin for the treatment of peripheral T-cell lymphoma. J Adv Pract Oncol 6:22–36Google Scholar
  19. 19.
    Andrews KT, Tran TN, Lucke AJ et al (2008) Potent antimalarial activity of histone deacetylase inhibitor analogues. Antimicrob Agents Chemother 52:1454–1461.  https://doi.org/10.1128/AAC.00757-07
  20. 20.
    Darkin-Rattray SJ, Gurnett AM, Myers RW et al (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci U S A 93:13143–13147CrossRefGoogle Scholar
  21. 21.
    Engel JA, Jones AJ, Avery VM et al (2015) Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. Int J Parasitol Drugs Drug Resist 5:117–126.  https://doi.org/10.1016/j.ijpddr.2015.05.004 CrossRefGoogle Scholar
  22. 22.
    Ganai SA (2016) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm Biol 54:1926–1935.  https://doi.org/10.3109/13880209.2015.1135966 CrossRefGoogle Scholar
  23. 23.
    Sumanadasa SDM, Goodman CD, Lucke AJ et al (2012) Antimalarial activity of the anticancer histone deacetylase inhibitor SB939. Antimicrob Agents Chemother 56:3849–3856.  https://doi.org/10.1128/AAC.00030-12
  24. 24.
    Andrews KT, Gupta AP, Tran TN et al (2012) Comparative gene expression profiling of P. falciparum malaria parasites exposed to three different histone deacetylase inhibitors. PLoS One 7:e31847.  https://doi.org/10.1371/journal.pone.0031847
  25. 25.
    Wheatley NC, Andrews KT, Tran TL et al (2010) Antimalarial histone deacetylase inhibitors containing cinnamate or NSAID components. Bioorg Med Chem Lett 20:7080–7084.  https://doi.org/10.1016/j.bmcl.2010.09.096 CrossRefGoogle Scholar
  26. 26.
    Hansen FK, Sumanadasa SDM, Stenzel K et al (2014) Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. Eur J Med Chem 82:204–213.  https://doi.org/10.1016/j.ejmech.2014.05.050 CrossRefGoogle Scholar
  27. 27.
    Dow GS, Chen Y, Andrews KT et al (2008) Antimalarial activity of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors. Antimicrob Agents Chemother 52:3467–3477.  https://doi.org/10.1128/AAC.00439-08
  28. 28.
    Tonkin CJ, Carret CK, Duraisingh MT et al (2009) Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol 7:e1000084.  https://doi.org/10.1371/journal.pbio.1000084
  29. 29.
    Coleman BI, Skillman KM, Jiang RHY et al (2014) A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16:177–186.  https://doi.org/10.1016/j.chom.2014.06.014
  30. 30.
    Joshi MB, Lin DT, Chiang PH et al (1999) Molecular cloning and nuclear localization of a histone deacetylase homologue in Plasmodium falciparum. Mol Biochem Parasitol 99:11–19.  https://doi.org/10.1016/S0166-6851(98)00177-7
  31. 31.
    The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169.  https://doi.org/10.1093/nar/gkw1099 CrossRefGoogle Scholar
  32. 32.
    Alves Avelar LA, Held J, Engel JA et al (2017) Design and synthesis of novel anti-plasmodial histone deacetylase inhibitors containing an alkoxyamide connecting unit. Arch Pharm (Weinheim) 350:1600347.  https://doi.org/10.1002/ardp.201600347
  33. 33.
    Mukherjee P, Pradhan A, Shah F et al (2008) Structural insights into the Plasmodium falciparum histone deacetylase 1 (PfHDAC-1): a novel target for the development of antimalarial therapy. Bioorg Med Chem 16:5254–5265.  https://doi.org/10.1016/j.bmc.2008.03.005
  34. 34.
    Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15Google Scholar
  35. 35.
    Johnson M, Zaretskaya I, Raytselis Y et al (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9.  https://doi.org/10.1093/nar/gkn201 CrossRefGoogle Scholar
  36. 36.
    Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242.  https://doi.org/10.1093/nar/28.1.235 CrossRefGoogle Scholar
  37. 37.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  38. 38.
    Millard CJ, Watson PJ, Celardo I et al (2013) Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 51:57–67.  https://doi.org/10.1016/j.molcel.2013.05.020
  39. 39.
    Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524.  https://doi.org/10.1110/ps.062416606 CrossRefGoogle Scholar
  40. 40.
    Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410.  https://doi.org/10.1093/nar/gkm290 CrossRefGoogle Scholar
  41. 41.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291.  https://doi.org/10.1107/S0021889892009944 CrossRefGoogle Scholar
  42. 42.
    Lauffer BEL, Mintzer R, Fong R et al (2013) Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem 288:26926–26943.  https://doi.org/10.1074/jbc.M113.490706
  43. 43.
    Somoza JR, Skene RJ, Katz BA et al (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12:1325–1334.  https://doi.org/10.1016/j.str.2004.04.012
  44. 44.
    Watson PJ, Fairall L, Santos GM, Schwabe JWR (2012) Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335–340.  https://doi.org/10.1038/nature10728 CrossRefGoogle Scholar
  45. 45.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefGoogle Scholar
  46. 46.
    Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213.  https://doi.org/10.1093/nar/gkv951
  47. 47.
    Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090.  https://doi.org/10.1093/nar/gkt1031 CrossRefGoogle Scholar
  48. 48.
    Irwin JJ, Shoichet BK (2005) ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182.  https://doi.org/10.1021/ci049714+ CrossRefGoogle Scholar
  49. 49.
    CORINA (2018) 3D structure generator CORINA classic. Molecular Networks GmbH, Nuremberg, www.mn-am.com
  50. 50.
    Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Model 34:1000–1008.  https://doi.org/10.1021/ci00020a039
  51. 51.
    Schrödinger Release 2016-1 (2016) LigPrep. Schrödinger, LLC, New YorkGoogle Scholar
  52. 52.
    Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691.  https://doi.org/10.1007/s10822-007-9133-z CrossRefGoogle Scholar
  53. 53.
    Schrödinger Release 2016-1 (2016) Epik, Schrödinger, LLC, New YorkGoogle Scholar
  54. 54.
    Schrödinger (2016) Glide. Schrödinger, LLC, New YorkGoogle Scholar
  55. 55.
    Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem 47:1750–1759.  https://doi.org/10.1021/jm030644s
  56. 56.
    Schrödinger Release 2016-1 (2016) Protein Preparation Wizard, Schrödinger, LLC, New YorkGoogle Scholar
  57. 57.
    Schrödinger (2016) Prime. Schrödinger, LLC, New YorkGoogle Scholar
  58. 58.
    Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49:6177–6196.  https://doi.org/10.1021/jm051256o
  59. 59.
    Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26.  https://doi.org/10.1023/A:1016357811882 CrossRefGoogle Scholar
  60. 60.
    Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786.  https://doi.org/10.1021/ci200227u
  61. 61.
    Case DA, Cerutti DS, Cheatham III TE et al (2016) AMBER 2016. University of California, San FranciscoGoogle Scholar
  62. 62.
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260.  https://doi.org/10.1016/j.jmgm.2005.12.005 CrossRefGoogle Scholar
  63. 63.
    Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174.  https://doi.org/10.1002/jcc.20035 CrossRefGoogle Scholar
  64. 64.
    Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713.  https://doi.org/10.1021/acs.jctc.5b00255
  65. 65.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N ·log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  66. 66.
    Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341.  https://doi.org/10.1016/0021-9991(77)90098-5 CrossRefGoogle Scholar
  67. 67.
    Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962.  https://doi.org/10.1002/jcc.540130805
  68. 68.
    Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095.  https://doi.org/10.1021/ct400341p
  69. 69.
    Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321.  https://doi.org/10.1021/ct300418h
  70. 70.
    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461.  https://doi.org/10.1517/17460441.2015.1032936 CrossRefGoogle Scholar
  71. 71.
    Luo R, David L, Gilson MK (2002) Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J Comput Chem 23:1244–1253.  https://doi.org/10.1002/jcc.10120 CrossRefGoogle Scholar
  72. 72.
    Ayer DE (1999) Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9:193–198.  https://doi.org/10.1016/S0962-8924(99)01536-6 CrossRefGoogle Scholar
  73. 73.
    Micelli C, Rastelli G (2015) Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov Today 20:718–735.  https://doi.org/10.1016/j.drudis.2015.01.007 CrossRefGoogle Scholar
  74. 74.
    Elbadawi M, Awadalla M, Hamid M et al (2015) Valproic acid as a potential Inhibitor of Plasmodium falciparum histone deacetylase 1 (PfHDAC1): an in silico approach. Int J Mol Sci 16:3915–3931.  https://doi.org/10.3390/ijms16023915
  75. 75.
    Melesina J, Robaa D, Pierce RJ et al (2015) Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors. J Mol Graph Model 62:342–361.  https://doi.org/10.1016/j.jmgm.2015.10.006 CrossRefGoogle Scholar
  76. 76.
    Ryckebusch A, Deprez-Poulain R, Maes L et al (2003) Synthesis and in vitro and in vivo antimalarial activity of N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine derivatives. J Med Chem 46:542–557.  https://doi.org/10.1021/jm020960r
  77. 77.
    Freitag M, Kaiser M, Larsen T et al (2007) Synthesis and antiplasmodial activity of new N-[3-(4-{3-[(7-chloroquinolin-4-yl)amino]propyl}piperazin-1-yl)propyl]carboxamides. Bioorg Med Chem 15:2782–2788.  https://doi.org/10.1016/j.bmc.2006.12.034 CrossRefGoogle Scholar
  78. 78.
    Plouffe D, Brinker A, McNamara C et al (2008) In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci 105:9059–9064.  https://doi.org/10.1073/pnas.0802982105 CrossRefGoogle Scholar
  79. 79.
    Gamo F-J, Sanz LM, Vidal J et al (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310.  https://doi.org/10.1038/nature09107 CrossRefGoogle Scholar
  80. 80.
    Smit FJ, N’Da DD (2014) Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg Med Chem 22:1128–1138.  https://doi.org/10.1016/j.bmc.2013.12.032 CrossRefGoogle Scholar
  81. 81.
    Guiguemde WA, Shelat AA, Bouck D et al (2010) Chemical genetics of Plasmodium falciparum. Nature 465:311–315.  https://doi.org/10.1038/nature09099
  82. 82.
    Arafa RK, Brun R, Wenzler T et al (2005) Synthesis, DNA affinity, and antiprotozoal activity of fused ring dicationic compounds and their prodrugs. J Med Chem 48:5480–5488.  https://doi.org/10.1021/jm058190h
  83. 83.
    Madrid PB, Liou AP, DeRisi JL, Guy RK (2006) Incorporation of an intramolecular hydrogen-bonding motif in the side chain of 4-aminoquinolines enhances activity against drug-resistant P. falciparum. J Med Chem 49:4535–4543.  https://doi.org/10.1021/jm0600951
  84. 84.
    Klingenstein R, Melnyk P, Leliveld SR et al (2006) Similar structure−activity relationships of quinoline derivatives for antiprion and antimalarial effects. J Med Chem 49:5300–5308.  https://doi.org/10.1021/jm0602763
  85. 85.
    Ontoria JM, Paonessa G, Ponzi S et al (2016) Discovery of a selective series of inhibitors of Plasmodium falciparum HDACs. ACS Med Chem Lett 7:454–459.  https://doi.org/10.1021/acsmedchemlett.5b00468

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Amarjeet Kumar
    • 1
  • Suman Kumar Dhar
    • 2
  • Naidu Subbarao
    • 1
  1. 1.School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations