Advertisement

Nonlinear optical properties of aluminum nitride nanotubes doped by excess electron: a first principle study

  • Tang-Mi Yuan
  • Shao-Li Liu
  • Zhen-Bo Liu
  • Xiao Wang
  • Wen-Zuo Li
  • Jian-Bo Cheng
  • Qing-Zhong Li
Original Paper
  • 58 Downloads

Abstract

Aluminum nitride nanotubes (AlNNTs) doped by the excess electron, e@AlNNT and M@N-AlNNT (M = Li, Na, K), have been designed and their geometrical, electronic, and nonlinear optical (NLO) properties have been explored theoretically. The results showed that the excess electron narrows the energy gap between HOMO and LUMO values (EH-L) of the doped systems in the range of 3.42–5.37 eV, which is due to a new energy level HOMO formed for the doped excess electron, with higher energy than the original HOMO of AlNNT. Importantly, the doped excess electron considerably increases the first hyperpolarizability (β0) from 130 a.u. of the undoped AlNNT to 646 a.u. for e@AlNNT, 2606 a.u. for Li@N-AlNNT, while 1.14 × 105 a.u. for Na@N-AlNNT, and 1.37 × 106 a.u. for K@N-AlNNT. The enormous β0 values for Na@N-AlNNT and K@N-AlNNT are attributed to the low transition energy. These results demonstrate that AlNNTs are a promising material in high-performance NLO nanomaterials for electronic devices.

Keywords

Aluminum nitride nanotube Excess electron narrow HOMO-LUMO energy gap Nonlinear optical 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2013BM016)

Supplementary material

894_2018_3750_MOESM1_ESM.docx (58 kb)
ESM 1 (DOCX 57 kb)

References

  1. 1.
    Ostroverkhova O, Moerner WE (2004) Organic photorefractives: mechanisms, materials, and applications. Chem Rev 104(7):3267–3314CrossRefPubMedGoogle Scholar
  2. 2.
    Okuno K, Shigeta Y, Kishi R, Nakano M (2013) Photochromic switching of diradical character: design of efficient nonlinear optical switches. J Phys Chem Lett 4(15):2418–2422CrossRefGoogle Scholar
  3. 3.
    Coe BJ (2006) Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc Chem Res 39(6):383–393CrossRefPubMedGoogle Scholar
  4. 4.
    Eaton DF (1991) Nonlinear optical materials. Enc Mater Sci Technol 253(5017):281–287Google Scholar
  5. 5.
    Kanis DR, Lacroix PG, Ratner MA, Marks TJ (1994) Electronic structure and quadratic hyperpolarizabilities in organotransition-metal chromophores having weakly coupled π-networks. Unusual mechanisms for second-order response. J Am Chem Soc 116(22):10089–10102CrossRefGoogle Scholar
  6. 6.
    Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2004) Ab initio study of the interaction hyperpolarizabilities of H-bond dimers between two π-systems. J Phys Chem A 108(108):2464–2468CrossRefGoogle Scholar
  7. 7.
    Eisenthal KB (2006) Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem Rev 106(4):1462–1477CrossRefPubMedGoogle Scholar
  8. 8.
    Li Y, Li ZR, Wu D, Li RY, Hao XY, Sun CC (2004) An ab initio prediction of the extraordinary static first hyperpolarizability for the electron-solvated cluster (FH)2{e}(HF). J Phys Chem B 108(10):3145–3148CrossRefGoogle Scholar
  9. 9.
    Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) How the number and location of lithium atoms affect the first hyperpolarizability of graphene. J Phys Chem C 117(1):19792–19798CrossRefGoogle Scholar
  10. 10.
    Zhong RL, Sun SL, Xu HL, Qiu YQ, Su ZM (2013) BN segment doped effect on the first hyperpolarizibility of heteronanotubes: focused on an effective connecting pattern. J Phys Chem C 117(19):10039–10044CrossRefGoogle Scholar
  11. 11.
    Zhong RL, Sun SL, Xu HL, Qiu YQ, Su ZM (2014) Helical carbon segment in carbon-boron-nitride heteronanotubes: structure and nonlinear optical properties. Chempluschem 79(5):732–736CrossRefGoogle Scholar
  12. 12.
    Gao FW, Zhong RL, Sun SL, Xu HL, Zhao L, Su ZM (2015) Charge transfer and first hyperpolarizability: cage-like radicals C59X and lithium encapsulated li@ C59X (X= B, N). J Mol Model 21(10):1–6Google Scholar
  13. 13.
    Zhong RL, Xu HL, Li ZR, Su ZM (2015) Role of excess electrons in nonlinear optical response. J Phys Chem Lett 6(4):612–619CrossRefPubMedGoogle Scholar
  14. 14.
    Banerjee P, Nandi PK (2016) Electronic structures and second hyperpolarizabilities of alkaline earth metal complexes end-capped with NA2 (A = H, Li, Na). Phys Chem Chem Phys 18(18):12505–12520CrossRefPubMedGoogle Scholar
  15. 15.
    Islam N, Pandith AH (2017) Chiro-optic and nonlinear optical studies of bridged triarylamine heterohelicenes: a DFT study. J Mol Struct 1142:1–10Google Scholar
  16. 16.
    Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94(94):195–242CrossRefGoogle Scholar
  17. 17.
    Vancleuvenbergen S, Asselberghs I, Vanormelingen W, Verbiest T, Franz E, Clays K, Kuzyk M, Koeckelberghs G (2014) Record-high hyperpolarizabilities in conjugated polymers. J Mater Chem C 2(23):4533–4538CrossRefGoogle Scholar
  18. 18.
    Priyadarshy S, Therien MJ, Beratan DN (1998) Acetylenyl-linked, porphyrin-bridged, donor−acceptor molecules: a theoretical analysis of the molecular first hyperpolarizability in highly conjugated push−pull chromophore structures. J Am Chem Soc 118(6):1504–1510CrossRefGoogle Scholar
  19. 19.
    Xiao D, Bulat FA, Yang W, Beratan DN (2008) A donor-nanotube paradigm for nonlinear optical materials. Nano Lett 8(9):2814–2818CrossRefPubMedGoogle Scholar
  20. 20.
    Bai Y, Zhou ZJ, Wang JJ, Li Y, Wu D, Chen W, Li ZR, Sun CC (2013) New acceptor–bridge–donor strategy for enhancing NLO response with long-range excess electron transfer from the NH2...M/M3O donor (M = Li, Na, K) to inside the electron hole cage C20F19 acceptor through the unusual σ chain bridge (CH2)4. J Phys Chem A 117(13):2835–2843CrossRefPubMedGoogle Scholar
  21. 21.
    Liu ZB, Zhou ZJ, Li Y, Li ZR, Wang R, Li QZ, Li Y, Jia FY, Wang YF, Li ZJ, Cheng JB, Sun CC (2010) Push-pull electron effects of the complexant in a li atom doped molecule with electride character: a new strategy to enhance the first hyperpolarizability. Phys Chem Chem Phys 12(35):10562–10568CrossRefPubMedGoogle Scholar
  22. 22.
    Schulz M, Tretiak S, Chernyak V, Mukamel S (2000) Size scaling of third-order off-resonant polarizabilities. Electronic coherence in organic oligomers. J Am Chem Soc 122(3):452–459CrossRefGoogle Scholar
  23. 23.
    He HM, Li Y, Sun WM, Wang JJ, Wu D, Zhong RL, Zhou ZJ, Li ZR (2016) All-metal electride molecules CuAg@Ca7M (M = Be, Mg, and Ca) with multi-excess electrons and all-metal polyanions: molecular structures and bonding modes as well as large infrared nonlinear optical responses. Dalton Trans 45(6):2656–2665CrossRefPubMedGoogle Scholar
  24. 24.
    de la Torre G, Vázquez P, Agulló-López F, Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104(9):3723–3750CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang TG, Zhao Y, Asselberghs I, Persoons A, Clays K, Therien MJ (2005) Design, synthesis, linear, and nonlinear optical properties of conjugated (porphinato)zinc(II)-based donor-acceptor chromophores featuring nitrothiophenyl and nitrooligothiophenyl electron-accepting moieties. J Am Chem Soc 127(27):9710–9720CrossRefPubMedGoogle Scholar
  26. 26.
    Liu CG, Guan W, Song P, Yan LK, Su ZM (2009) Redox-switchable second-order nonlinear optical responses of push-pull monotetrathiafulvalene-metalloporphyrins. Inorg Chem 48(14):6548–6554CrossRefPubMedGoogle Scholar
  27. 27.
    Coe BJ, Fielden J, Foxon SP, Asselberghs I, Clays K, Brunschwig BS (2010) Two-dimensional, pyrazine-based nonlinear optical chromophores with ruthenium(II) ammine electron donors. Inorg Chem 49(22):10718–10726CrossRefPubMedGoogle Scholar
  28. 28.
    Chen W, Li ZR, Wu D, Gu FL, Hao XY, Wang BQ, Li RJ, Sun CC (2004) The static polarizability and first hyperpolarizability of the water trimer anion: ab initio study. J Chem Phys 121(21):10489–10494CrossRefPubMedGoogle Scholar
  29. 29.
    Champagne B, Spassova M, Jadin J-B, Kirtman B (2002) Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains. J Chem Phys 116(9):3935–3946CrossRefGoogle Scholar
  30. 30.
    Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@calix[4]pyrrole. J Am Chem Soc 127(31):10977–10981CrossRefPubMedGoogle Scholar
  31. 31.
    Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) A carbon nanotube cross structure as a nanoscale quantum device. Nano Lett 3(9):1187–1190CrossRefGoogle Scholar
  32. 32.
    Lijima S (1991) Helical microtubules of graphic carbon. Nature 354:56–58CrossRefGoogle Scholar
  33. 33.
    Zurek E, Autschbach J (2004) Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes. J Am Chem Soc 126(40):13079–13088CrossRefPubMedGoogle Scholar
  34. 34.
    Khorrampour R, Esrafili MD, Hadipour NL (2009) Density functional theory study of atomic oxygen, O and O adsorptions on the H-capped (5,0) single-walled carbon nanotube. Phys E: Low Dimens Syst Nanostruct 41(8):1373–1378CrossRefGoogle Scholar
  35. 35.
    Ma GX, Jia RR, Zhao JH, Wang ZJ, Song C, Jia SP, Zhu ZP (2011) Nitrogen-doped hollow carbon nanoparticles with excellent oxygen reduction performances and their electrocatalytic kinetics. J Phys Chem C 115(50):25148–25154CrossRefGoogle Scholar
  36. 36.
    Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28(5):335CrossRefGoogle Scholar
  37. 37.
    Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B Condens Matter 49(7):5081CrossRefPubMedGoogle Scholar
  38. 38.
    Juárez AR, Anota EC, Cocoletzi HH, Ramírez JFS, Castro M (2017) Stability and electronic properties of armchair boron nitride/carbon nanotubes. Fullerenes, Nanotubes Carbon Nanostruct 25(12):716–725CrossRefGoogle Scholar
  39. 39.
    Sevik C, Kinaci A, Haskins JB, Çaǧın T (2012) Influence of disorder on thermal transport properties of boron nitride nanostructures. Phys Rev B Condens Matter 86(7):1639–1645CrossRefGoogle Scholar
  40. 40.
    Smirnov VV, Manevitch LI, Strozzi M, Pellicano F (2016) Nonlinear optical vibrations of single-walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations. Phys D Nonlinear Phenom 325:113–125CrossRefGoogle Scholar
  41. 41.
    Xu HL, Wang FF, Li ZR, Wang BQ, Wu D, Chen W, Yu GT, Gu FL, Aoki Y (2009) The nitrogen edge-doped effect on the static first hyperpolarizability of the supershort single-walled carbon nanotube. J Comput Chem 30(7):1128–1134CrossRefPubMedGoogle Scholar
  42. 42.
    Liu YT, Wang X, Liu XY, Ji YQ (2012) Nonlinear optical response in donor-zigzag carbon nanotube-acceptor dependence on the tube diameter. Acta Chim Sin 70(9):1131–1134CrossRefGoogle Scholar
  43. 43.
    Ma TY, Guan W, Wen SZ, Lang ZL, Yan LK, Su ZM (2012) Theoretical study of second-order nonlinear optical properties of hexamolybdates-substituted carbon nanotubes. Chem J Chin Univ 33(5):1057–1062Google Scholar
  44. 44.
    Hatua K, Nandi PK (2016) Effect of alkaline earth metal at the single wall CNT mouth on the electronic structure and second hyperpolarizability. J Theor Comput Chem 15(5):14CrossRefGoogle Scholar
  45. 45.
    Nagaraja KK, Pramodini S, Poornesh P, Telenkov MP, Kityk IV (2017) Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes. Phys B Condens Matter 512:45–53CrossRefGoogle Scholar
  46. 46.
    Niu M, Yu GT, Yang GH, Chen W, Zhao XG, Huang XR (2014) Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg Chem 53(1):349–358CrossRefPubMedGoogle Scholar
  47. 47.
    Ayub K (2016) Are phosphide nano-cages better than nitride nano-cages? A kinetic, thermodynamic and non-linear optical properties study of alkali metal encapsulated X12Y12 nano-cages. J Mater Chem C 4(46):10919–10934CrossRefGoogle Scholar
  48. 48.
    Hou N, Wu YY, Liu JY (2016) Theoretical studies on structures and nonlinear optical properties of alkali doped electrides B12N12-M (M=Li, Na, K). Int J Quantum Chem 116(17):1296–1302CrossRefGoogle Scholar
  49. 49.
    Maria M, Iqbal J, Ayub K (2016) Enhanced electronic and non-linear optical properties of alkali metal (Li, Na, K) doped boron nitride nano-cages. J Alloys Compd 687:976–983CrossRefGoogle Scholar
  50. 50.
    Maria M, Iqbal J, Ayub K (2016) Theoretical study on non linear optical properties of alkali metal (Li, Na, K) doped aluminum nitride nano-cages. RSC Adv 6(96):94228–94235Google Scholar
  51. 51.
    Zhong RL, Xu HL, Sun SL, Qiu YQ, Su ZM (2012) The excess electron in a boron nitride nanotube: pyramidal NBO charge distribution and remarkable first hyperpolarizability. Chem Eur J 18(36):11350–11355CrossRefPubMedGoogle Scholar
  52. 52.
    Tondare VN, Balasubramanian C, Shende SV, Joag DS, Godbole VP, Bhoraskar SV, Bhadbhade M (2002) Field emission from open ended aluminum nitride nanotubes. Appl Phys Lett 80(25):4813–4815CrossRefGoogle Scholar
  53. 53.
    Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) Electronic sensor for sulfide dioxide based on AlN nanotubes: a computational study. J Mol Model 18(10):4745–4750CrossRefPubMedGoogle Scholar
  54. 54.
    Zhou Z, Zhao J, Chen Y, Schleyer PR, Chen Z (2007) Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Nanotechnology 18(42):424023CrossRefPubMedGoogle Scholar
  55. 55.
    Esrafili MD (2013) A DFT study on electronic structure and local reactivity descriptors of pristine and carbon-substituted AlN nanotubes. Can J Chem 91(8):711–717CrossRefGoogle Scholar
  56. 56.
    Mandaviani A, Esrafili MD, Esrafili A, Behzadi H (2013) A quantum chemistry study on surface reactivity of pristine and carbon-substituted AlN nanotubes. Phys E-Low-Dimens Syst Nanostruct 53(6):161–167CrossRefGoogle Scholar
  57. 57.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven J, Kudin KNT, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, AlLaham MA, Peng CY, Nanayakkara A, Challacombe M, PMW G, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, revision A02. Gaussian, Inc., WallingfordGoogle Scholar
  58. 58.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefPubMedGoogle Scholar
  59. 59.
    Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66(6):2664–2668CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople’s Republic of China

Personalised recommendations