Advertisement

A quantitative tool to establish magic number clusters, ε3, applied in small silicon clusters, Si2-11

  • Gabriel F. S. Fernandes
  • Francisco B. C. Machado
  • Luiz F. A. Ferrão
Original Paper
  • 40 Downloads
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Abstract

The present work focuses on establishing a function to rank the stability of small silicon clusters to characterize their magic numbers. This function is composed by a thermodynamic descriptor, the atomization Gibbs free energy, and indirect kinetic descriptors, the highest occupied molecular orbital energy and the lowest excitation energy of each system. The silicon clusters geometries were optimized using density functional theory within a hybrid meta-GGA approximation (M06), while the electronic energy was corrected by single-point calculation using CASPT2 level of theory to obtain the molecular properties. Both methodologies were combined with polarized diffused triple zeta, 6-311++G(3df,3pd), basis set for all atoms. Some molecular properties and their combinations were considered to create the aforementioned function to represent the clusters chemical stability and their magic numbers. The chosen stability ranking function, called ε3, presents results in agreement with the previous mass spectrometry experimental data identifying 4, 6, 7 and 10 as magic numbers for small silicon clusters. We believe this stability ranking function can be useful to study other intramolecular atomic and molecular clusters.

Graphical abstract

Stability ranking function, ε31, applied on Sin (n = 2 - 11) clusters showing Fukui’s functions for the Sin (n = 2 – 11) obtained by the electronic density difference through CASPT2//M06/6-311++G(3df,3pd) with an isosurface value equal to 0.003

Keywords

Stability ranking function Molecular properties Silicon clusters CASPT2 

Notes

Acknowledgments

This work was supported by Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under grants 2017/07707-3 and 2017/01359-3, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grants 307052/2016-8, 404337/2016-3, 309051/2016-9 and 406107/2016-5.

Supplementary material

894_2018_3748_MOESM1_ESM.docx (167 kb)
ESM 1 (DOCX 167 kb)

References

  1. 1.
    Eguchi S, Hoyt JL, Leitz CW, Fitzgerald EA (2002) Comparison of arsenic and phosphorus diffusion behavior in silicon-germanium alloys. Appl Phys Lett 80:1743–1745.  https://doi.org/10.1063/1.1458047 CrossRefGoogle Scholar
  2. 2.
    Bloomfield LA, Freeman RR, Brown WL (1985) Photofragmentation of mass-resolved Si2-12+ clusters. Phys Rev Lett 54:2246–2249.  https://doi.org/10.1103/PhysRevLett.54.2246 CrossRefGoogle Scholar
  3. 3.
    Heath JR, Liu Y, O’Brien SC et al (1985) Semiconductor cluster beams: one and two color ionization studies of Si x and Ge x. J Chem Phys 83:5520–5526.  https://doi.org/10.1063/1.449673 CrossRefGoogle Scholar
  4. 4.
    Cheshnovsky O, Yang SH, Pettiette CL et al (1987) Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem Phys Lett 138:119–124.  https://doi.org/10.1016/0009-2614(87)80353-6 CrossRefGoogle Scholar
  5. 5.
    Raghavachari K (1986) Theoretical study of small silicon clusters: equilibrium geometries and electronic structures of sin (n=2?7,10). J Chem Phys 84:5672–5686.  https://doi.org/10.1063/1.449927 CrossRefGoogle Scholar
  6. 6.
    Raghavachari K, Rohlfing CM (1988) Bonding and stabilities of small silicon clusters: a theoretical study of Si7?Si10. J Chem Phys 89:2219–2234.  https://doi.org/10.1063/1.455065 CrossRefGoogle Scholar
  7. 7.
    Raghavachari K, Rohlfing CM (1991) Electronic structures of the negative ions Si2--Si10: Electron affinities of small silicon clusters. J Chem Phys 94:3670–3678.  https://doi.org/10.1063/1.459738 CrossRefGoogle Scholar
  8. 8.
    LA C, Deutsch PW, Raghavachari K (1992) Binding energies and electron affinities of small silicon clusters (n=2–5). J Chem Phys 96:6868–6872.  https://doi.org/10.1063/1.462577 CrossRefGoogle Scholar
  9. 9.
    Tománek D, Schluter MA (1986) Calculation of magic numbers and the stability of small Si clusters. Phys Rev Lett 56:1055–1058CrossRefGoogle Scholar
  10. 10.
    Zhu X, Zeng XC (2003) Structures and stabilities of small silicon clusters: ab initio molecular-orbital calculations of Si7-Si11. J Chem Phys 118:3558–3570.  https://doi.org/10.1063/1.1535906 CrossRefGoogle Scholar
  11. 11.
    Pouchan C, Bégué D, Zhang DY (2004) Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si n(n=3–10). J Chem Phys 121:4628–4634.  https://doi.org/10.1063/1.1768166 CrossRefGoogle Scholar
  12. 12.
    Yang J, Xu W, Xiao W (2005) The small silicon clusters sin (n=2–10) and their anions: structures, themochemistry, and electron affinities. J Mol Struct THEOCHEM 719:89–102.  https://doi.org/10.1016/j.theochem.2004.12.035 CrossRefGoogle Scholar
  13. 13.
    Fukui K (1982) The role of frontier orbitals in chemical reactions (Nobel lecture). Angew Chem Int Ed Eng 21:801–809.  https://doi.org/10.1002/anie.198208013 CrossRefGoogle Scholar
  14. 14.
    Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726.  https://doi.org/10.1073/pnas.82.20.6723 CrossRefGoogle Scholar
  15. 15.
    Balawender R, Komorowski L (1998) Atomic Fukui function indices and local softness ab initio. J Chem Phys 109:5203–5211.  https://doi.org/10.1063/1.477137 CrossRefGoogle Scholar
  16. 16.
    Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975.  https://doi.org/10.1021/jp034707u CrossRefGoogle Scholar
  17. 17.
    Chandra AK, Nguyen MT (2002) Use of local softness for the interpretation of reaction mechanisms. Int J Mol Sci 3:310–323.  https://doi.org/10.3390/i3040310 CrossRefGoogle Scholar
  18. 18.
    Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924.  https://doi.org/10.1021/ja983494x CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241.  https://doi.org/10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  20. 20.
    Curtiss LA, MP MG, Blaudeau J-P et al (1995) Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. J Chem Phys 103:6104.  https://doi.org/10.1063/1.470438 CrossRefGoogle Scholar
  21. 21.
    Andersson K, Malmqvist P, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226.  https://doi.org/10.1063/1.462209 CrossRefGoogle Scholar
  22. 22.
    Shiozaki T, Werner HJ (2010) Communication: second-order multireference perturbation theory with explicit correlation: CASPT2-F12. J Chem Phys 133.  https://doi.org/10.1063/1.3489000
  23. 23.
    Celani P, Werner H-J (2000) Multireference perturbation theory for large restricted and selected active space reference wave functions. J Chem Phys 112:5546–5557.  https://doi.org/10.1063/1.481132 CrossRefGoogle Scholar
  24. 24.
    Shiozaki T, Gyroffy W, Celani P, Werner HJ (2011) Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J Chem Phys 135.  https://doi.org/10.1063/1.3633329
  25. 25.
    Andersson K, Malmqvist PA, Roos BO et al (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488.  https://doi.org/10.1021/j100377a012 CrossRefGoogle Scholar
  26. 26.
    Knowles PJ, Werner H-J (1985) An efficient second-order MC SCF method for long configuration expansions. Chem Phys Lett 115:259–267.  https://doi.org/10.1016/0009-2614(85)80025-7 CrossRefGoogle Scholar
  27. 27.
    Werner H-J, Knowles PJ (1985) A second order multiconfiguration SCF procedure with optimum convergence. J Chem Phys 82:5053.  https://doi.org/10.1063/1.448627 CrossRefGoogle Scholar
  28. 28.
    Szalay PG, Bartlett RJ (1993) Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI. Chem Phys Lett 214:481–488.  https://doi.org/10.1016/0009-2614(93)85670-J CrossRefGoogle Scholar
  29. 29.
    Szalay PG, Bartlett RJ (1995) Approximately extensive modifications of the multireference configuration interaction method: a theoretical and practical analysis. J Chem Phys 103:3600–3612.  https://doi.org/10.1063/1.470243 CrossRefGoogle Scholar
  30. 30.
    Roos BO, Andersson K (1995) Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited. Chem Phys Lett 245:215–223.  https://doi.org/10.1016/0009-2614(95)01010-7 CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian 09 Revision D.01Google Scholar
  32. 32.
    Werner H-J, Knowles PJ, Knizia G, et al (2015) MOLPRO, version 2015.1, a package of ab initio programsGoogle Scholar
  33. 33.
    Ueno LT, Kiohara VO, Ferrão LFA et al (2011) Theoretical study of the GemSin (m + n = 3) clusters. Int J Quantum Chem 111:1562–1569.  https://doi.org/10.1002/qua.22747 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaInstituto Tecnológico de AeronáuticaSão José dos CamposBrazil

Personalised recommendations