Advertisement

Electrical tree inhibition by SiO2/XLPE nanocomposites: insights from first-principles calculations

  • Xiaonan Zheng
  • Yang Liu
  • Ya Wang
Original Paper
  • 58 Downloads

Abstract

It has been extensively observed in experiments that nanoparticle additives can efficiently inhibit the electrical tree growth of the cross-linked polyethylene (XLPE) matrix of power cables. Inspired by this, the first-principles calculations employing the density functional theory (DFT) method were performed in this study to investigate the significant role of SiO2 nanosized fillers as a voltage stabilizer for power cable insulation. Several different types of α-SiO2 fillers, including hydroxylated, reconstructed, doped or oxygen vacancy surface structures, were constructed to model the interfacial interaction for SiO2/XLPE nanocomposites. It is found that the SiO2 additives can restrict the movement of the polyethylene chain through van der Waals physical interaction. More importantly, based on the Bader charge analysis we reveal that SiO2 could effectively capture hot electrons to suppress space charge accumulation in XLPE. However, some particular modified-surface SiO2, such as incompletely hydroxylated, B-doped, and oxygen vacancy defect on the top layer, could induce the H migration reaction and consequent electrical tree growth of the XLPE chain. In contrast, the SiO2 particles that have N-doped or oxygen vacancy on the lower layer with completely hydroxylated surfaces, as well as the reconstructed surface, are predicted to be favorable additives because of their quite strong physical interaction and very weak chemical activity with XLPE. The present study is useful to understand the mechanism of the nanosized voltage stabilizer and also provide important information for further experimental investigation.

Keywords

Electrical tree inhibition SiO2 Cross-linked polyethylene Density functional theory Interfacial interaction 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21203041), Natural Science Foundation of Heilongjiang province in China (Grant No. B2016004), the Fundamental Research Funds for the Central Universities in China (Grant No. HIT. NSRIF. 2017033), and the open project of Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education, (Grand No. KF20151105).

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

Supplementary material

894_2018_3742_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3145 kb)

References

  1. 1.
    Munteanu D (1997) Moisture cross-linkable silane-modified polyolefins. In: Al-Malaika S (ed) Reactive modifiers for polymers. Springer, Dordrecht, pp 196–265CrossRefGoogle Scholar
  2. 2.
    Ramachandran S, Hartlein R, Chandak P (1999) A comparative economic analysis for underground distribution cables insulated with TR-XLPE and EPR. In: IEEE/PES transmission and distribution conference, 11–16 Apr 1999, pp 112–119Google Scholar
  3. 3.
    Pollet P, Liotta CL, Eckert CA, Verma M, Nixon E, Sivaswamy S, Jha R, Momin F, Gelbaum L, Chaudhary BI (2011) Radical-mediated graft modification of polyethylene models with Vinyltrimethoxysilane: a fundamental study. Ind Eng Chem Res 50:12246–12253CrossRefGoogle Scholar
  4. 4.
    Mizutani T, Hikita M, Umemura A, Ieda M (1989) Electrical breakdown and space charge of polyphenylene sulfide films. In: Conference on electrical insulation and dielectric phenomena, 29 Oct −01 Nov 1989, pp 315–320Google Scholar
  5. 5.
    Jarvid M, Johansson A, Englund V, Gubanski S (2012) Electrical tree inhibition by voltage stabilizers. In: IEEE conference on electrical insulation and dielectric phenomena, 14–17 Oct 2012, pp 605–608Google Scholar
  6. 6.
    Yin Y, Tu D, Du Q, Gong Z (2000) Distribution and effect of space charge on dielectric properties in modified XLPE by chlorinated polyethylene. In: 6th international conference on properties and applications of dielectric materials, 21–26 Jun 2000, pp 268–271Google Scholar
  7. 7.
    Bradwell A, Cooper R, Varlow B (1971) Conduction in polythene with strong electric fields and the effect of prestressing on the electric strength. Proc IEE 118(1):247–254Google Scholar
  8. 8.
    Du BX, Su JG, Han T (2015) Effects of magnetic field on electrical tree growth in silicone rubber under repetitive pulse voltage. IEEE Trans Dielectr Electr Insul 22(4):1785–1792CrossRefGoogle Scholar
  9. 9.
    Werelius P, Tharning P, Eriksson R, Holmgren B (2001) Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables. IEEE Trans Dielectr Electr Insul 8(1):27–42CrossRefGoogle Scholar
  10. 10.
    Crine JP (1998) Electrical, chemical and mechanical processes in water treeing. IEEE Trans Dielectr Electr Insul 5(5):681–694CrossRefGoogle Scholar
  11. 11.
    Englund V, Huuva R, Gubanski SM, Hjertberg T (2009) Synthesis and efficiency of voltage stabilizers for XLPE cable insulation. IEEE Trans Dielectr Electr Insul 16(5):1455–1461CrossRefGoogle Scholar
  12. 12.
    Kisin S, Doelder JD, Eaton RF, Caronia PJ (2009) Quantum mechanical criteria for choosing appropriate voltage stabilization additives for polyethylene. Polym Degrad Stab 94(2):171–175CrossRefGoogle Scholar
  13. 13.
    Suh KS, Sun Jun H, Lee CR (1997) Charge behavior in polyethylene-ionomer blends. IEEE Trans Dielectr Electr Insul 4(1):58–63CrossRefGoogle Scholar
  14. 14.
    Yin Y, Du Q, Gong Z (2000) Influence of blending chlorinated polyethylene on the space charge effect in polyethylene. Trans China Electrotech Soc 15(2):52–57Google Scholar
  15. 15.
    Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high-voltage applications. Polymers 8(5):173–176CrossRefGoogle Scholar
  16. 16.
    Ieda M, Nagao M, Hikita M (1994) High-field conduction and breakdown in insulating polymers. Present situation and future prospects. IEEE Trans Dielectr Electr Insul 1(5):934–945CrossRefGoogle Scholar
  17. 17.
    Vaughan AS, Hosier IL, Dodd SJ, Sutton SJ (2006) On the structure and chemistry of electrical trees in polyethylene. J Phys D Appl Phys 39(5):962–978CrossRefGoogle Scholar
  18. 18.
    Chen X, Xu Y, Cao X, Dodd SJ, Dissado LA (2011) Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples. IEEE Trans Dielectr Electr Insul 18(3):847–860CrossRefGoogle Scholar
  19. 19.
    Kurnianto R, Murakami Y, Hozumi N, Nagao M (2007) Characterization of tree growth in filled epoxy resin: the effect of filler and moisture contents. IEEE Trans Dielectr Electr Insul 14(2):427–435CrossRefGoogle Scholar
  20. 20.
    Iizuka T, Tanaka T (2009) Effects of nano silica filler size on treeing breakdown lifetime of epoxy nanocomposites. In: 9th international conference on properties and applications of dielectric materials, 19–23 Jun 2009, pp 733–736Google Scholar
  21. 21.
    Tanaka T, Iizuka T, Sekiguchi Y, Murata Y (2009) Tree initiation and growth in LDPE/MgO nanocomposites and roles of nano fillers. In: Annual report conference on electrical insulation and dielectric phenomena, 18–21 Oct 2009, pp 646–649Google Scholar
  22. 22.
    Tanaka T, Bulinski A, Castellon J, Frechette M, Gubanski S, Kindersberger J, Montanari GC, Nagao M, Morshuis P, Tanaka Y, Pelissou S, Vaughan A, Ohki Y, Reed CW, Sutton S, Han SJ (2011) Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results. IEEE Trans Dielectr Electr Insul 18(5):1482–1517CrossRefGoogle Scholar
  23. 23.
    Zhang L, Zhou Y, Huang M, Sha Y, Tian J, Ye Q (2014) Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21(2):424–433CrossRefGoogle Scholar
  24. 24.
    Li Z, Okamoto K, Ohki Y, Tanaka T (2011) The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans Dielectr Electr Insul 18(3):675–681CrossRefGoogle Scholar
  25. 25.
    Ding HZ, Varlow BR (2004) Effect of nano-fillers on electrical treeing in epoxy resin subjected to AC voltage. In: Annual conference on electrical insulation and dielectric phenomena (CEIDP), 17–20 Oct 2004, pp 332–335Google Scholar
  26. 26.
    Wang Y, Wang C, Xiao K (2016) Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym. Test. 50:145–151CrossRefGoogle Scholar
  27. 27.
    Wang Y, Xiao K, Wang C, Yang L, Wang F (2016) Study on dielectric properties of TiO2/XLPE nanocomposites. In: IEEE international conference on high voltage engineering and application (ICHVE), 19–22 Sept 2016, pp 1–4Google Scholar
  28. 28.
    Han B, Jiao M, Li C, Zhang C, Wu Z, Wang Y, Zhang H (2015) QM/MD simulations on the role of SiO2 in polymeric insulation materials. RSC Adv 6(1):555–562CrossRefGoogle Scholar
  29. 29.
    Song S, Zhao H, Zheng X, Zhang H, Liu Y, Wang Y, Han B (2018) A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation. R Soc Open Sci 5(2):170772CrossRefGoogle Scholar
  30. 30.
    Hickel PE, Lafon F, Fortis F, Cambon O, Demazeau G (1997) On the development of new solvents for the high pressure crystal growth of α-quartz. Ann Chim-Sci Mat 22(8):571–576Google Scholar
  31. 31.
    Hickel PE, Lafon F, Chvansky PP, Largeteau A, Demazeau G (1997) Influence of the different physico-chemical parameters governing the crystal growth of α-quartz on the concentration of chemical defects. Ann Chim-Sci Mater 22(8):583–588Google Scholar
  32. 32.
    Balascio JF, Lind T (1997) The growth of piezoelectric alpha quartz crystals. Curr Opin Solid State Mater Sci 2(5):588–592CrossRefGoogle Scholar
  33. 33.
    de Leeuw NH, Higgins FM, Parker SC (1999) Modeling the surface structure and stability of α-quartz. J Phys Chem B 103(8):1270–1277CrossRefGoogle Scholar
  34. 34.
    Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34(1):121–151CrossRefGoogle Scholar
  35. 35.
    Du B, Johannsmann D (2004) Operation of the quartz crystal microbalance in liquids: derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir 20(7):2809–2812CrossRefGoogle Scholar
  36. 36.
    Ayad MM, Zaki EA, Stejskal J (2007) Determination of the dopant weight fraction in polyaniline films using a quartz-crystal microbalance. Thin Solid Films 515(23):8381–8385CrossRefGoogle Scholar
  37. 37.
    Goumans TPM, Wander A, Brown WA, Catlow CRA (2007) Structure and stability of the (001) alpha-quartz surface. Phys Chem Chem Phys 9(17):2146–2152CrossRefGoogle Scholar
  38. 38.
    Han JW, James JN, Sholl DS (2008) First principles calculations of methylamine and methanol adsorption on hydroxylated quartz (0001). Surf Sci 602(14):2478–2485CrossRefGoogle Scholar
  39. 39.
    Rignanese GM, De Vita A, Charlier JC, Gonze X, Car R (2000) First-principles molecular-dynamics study of the (0001) α−quartz surface. Phys Rev B 61(19):13250–13255CrossRefGoogle Scholar
  40. 40.
    Chen Y-W, Cao C, Cheng H-P (2008) Finding stable α-quartz (0001) surface s tructures via simulations. Appl Phys Lett 93(18):181911CrossRefGoogle Scholar
  41. 41.
    Jánossy I, Menyhárd M (1971) LEED study of quartz crystals. Surf Sci 25(3):647–649CrossRefGoogle Scholar
  42. 42.
    Bart F, Gautier M (1994) A LEED study of the (0001) a-quartz surface reconstruction. Surf. Sci. 311(1–2):L671–L676CrossRefGoogle Scholar
  43. 43.
    Koudriachova MV, Beckers JVL, de Leeuw SW (2001) Computer simulation of the quartz surface: a combined ab initio and empirical potential approach. Comput Mater Sci 20(3):381–386CrossRefGoogle Scholar
  44. 44.
    Del Rosal I, Gerber IC, Poteau R, Maron L (2015) Grafting of lanthanide complexes on silica surfaces dehydroxylated at 200 °C: a theoretical investigation. New J Chem 39(10):7703–7715CrossRefGoogle Scholar
  45. 45.
    Skuja L, Kajihara K, Hirano M, Hosono H (2012) Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials. Nucl Instrum Methods Phys Res B 286:159–168CrossRefGoogle Scholar
  46. 46.
    Nicklaw CJ, Pagey MP, Pantelides ST, Fleetwood DM, Schrimpf RD, Galloway KF, Wittig JE, Howard BM, Taw E, McNeil WH, Conley JF (2000) Defects and nanocrystals generated by Si implantation into a-SiO2. IEEE Trans Nucl Sci 47(6):2269–2275CrossRefGoogle Scholar
  47. 47.
    Chandrasekhar PS, Komarala VK (2015) Effect of graphene and au@SiO2 core-shell nano-composite on photoelectrochemical performance of dye-sensitized solar cells based on N-doped titania nanotubes. RSC Adv 5(103):84423–84431CrossRefGoogle Scholar
  48. 48.
    Zhao X, He XD, Zhang S, Wang LD, Li MW, Li YB (2011) Investigations on B-doped SiO2 thermal protective coatings by hybrid sol–gel method. Thin Solid Films 519(15):4849–4854CrossRefGoogle Scholar
  49. 49.
    Zhang SS, Zhao ZY, Yang PZ (2015) Analysis of electronic structure and optical properties of N-doped SiO2 based on DFT calculations. Mod Phys Lett B 29(19):1550100CrossRefGoogle Scholar
  50. 50.
    Pacchioni G, Vezzoli M, Fanciulli M (2001) Electronic structure of the paramagnetic boron oxygen hole center in B-doped SiO2. Phys Rev B 64(15):155201CrossRefGoogle Scholar
  51. 51.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  52. 52.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561CrossRefGoogle Scholar
  53. 53.
    Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys Condens Matter 6(40):8245–8257CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  55. 55.
    Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223–16233CrossRefGoogle Scholar
  56. 56.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928CrossRefGoogle Scholar
  57. 57.
    Bader RFW (1994) Atoms in molecules: a quantum theory. THEOCHEM J Mol Struct 360(1–3):175Google Scholar
  58. 58.
    Pan D, Liu L-M, Tribello GA, Slater B, Michaelides A, Wang E (2008) Surface energy and surface proton order of ice Ih. Phys Rev Lett 101(15):155703CrossRefGoogle Scholar
  59. 59.
    Henkelman G (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(113):9978–9985CrossRefGoogle Scholar
  60. 60.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRefGoogle Scholar
  61. 61.
    Liu Q, Poumellec B, Blum R, Girard G (2006) Stability of electron-beam poling in N or Ge-doped H:SiO2 films. Appl Phys Lett 88(24):693Google Scholar
  62. 62.
    Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Mineral 65(2):920–930Google Scholar
  63. 63.
    Malyi OI, Kulish VV, Persson C (2014) In search of new reconstructions of (001) α-quartz surface: a first principles study. RSC Adv 4(98):55599–55603CrossRefGoogle Scholar
  64. 64.
    Pacchioni G (2000) Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity. Solid State Sci 2(2):161–179CrossRefGoogle Scholar
  65. 65.
    Raghavachari K, Ricci D, Pacchioni G (2002) Optical properties of point defects in SiO2 from time-dependent density functional theory. J Chem Phys 116(2):825–831CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations