Theoretical study on the structure and reactions of uranium fluorides

  • Bárbara M. T. C. Peluzo
  • Breno R. L. Galvão
Original Paper
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)


The gas-phase mechanisms of UF4 and UF5 conversion into UF6 at different electronic states have been investigated using density functional theory (DFT) calculations, including relativistic effects and without the frozen core approximation. New geometries and electronic states of the isolated molecules were obtained, and their reactions were predicted to occur without a potential energy barrier. Our calculations show that UF4+F2 collision will most likely produce UF5+F in the gas phase. Relevant surface crossings between different electronic states are also obtained and their roles in collision dynamics are discussed.


DFT Uranium hexafluoride Gas-phase reactions 



This work received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). B.R.L.G. is a member of the Rede Mineira de Química (RQ-MG) supported by FAPEMIG (Project: CEX - RED-00010-14)


  1. 1.
    Loveland WD, Morrissey DJ, Seaborg GT (2005) Modern nuclear chemistry. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Cotton S (2013) Lanthanide and actinide chemistry. Wiley, New YorkGoogle Scholar
  3. 3.
    Magill J, Pfennig G, Dreher R, Sóti Z (2012) Karlsruher Nuklidkarte NucleonicaGoogle Scholar
  4. 4.
    Gupta CK, Sathiyamoorthy D (1998) Fluid bed technology in materials processing. CRC Press, Boca RatonCrossRefGoogle Scholar
  5. 5.
    Weinstock B, Goodman GL (1965) Vibrational properties of hexafluoride molecules. Adv Chem Phys 9:169–319Google Scholar
  6. 6.
    Hay PJ, Martin RL (1998) Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree–Fock and density functional methods: UF6, NpF6, and Puf6. J Chem Phys 109(10):3875CrossRefGoogle Scholar
  7. 7.
    Pantazis DA, Neese F (2011) All-electron scalar relativistic basis sets for the actinides. J Chem Theory Comput 7(3):677CrossRefGoogle Scholar
  8. 8.
    Batista ER, Martin RL, Hay PJ, Peralta JE, Scuseria GE (2004) Density functional investigations of the properties and thermochemistry of UF6 and UF5 using valence-electron and all-electron approaches. J Chem Phys 121(5):2144CrossRefPubMedGoogle Scholar
  9. 9.
    Hu SW, Chu TW, Liu XQ (2008) Theoretical mechanism study of UF6 hydrolysis in the gas phase. J Phys Chem A 112(37):8877CrossRefPubMedGoogle Scholar
  10. 10.
    Hu SW, Wang XY, Chu TW, Liu XQ (2009) Theoretical mechanism study of UF6 hydrolysis in the gas phase (ii). J Phys Chem A 113(32):9243CrossRefPubMedGoogle Scholar
  11. 11.
    Konings R, Booij A, Kovacs A, Girichev G, Giricheva N, Krasnova O (1996) The infrared spectrum and molecular structure of gaseous UF4. J Mol Struct 378(2):121Google Scholar
  12. 12.
    Zhang Y, Li Y, Cao Y (2008) A relativistic DFT study of the structure and vibrational frequencies of the gaseous UF4. J Mol Struct THEOCHEM 864(1):85CrossRefGoogle Scholar
  13. 13.
    Labaton V, Johnson K (1959) The fluorides of uranium—III kinetic studies of the fluorination of uranium tetrafluoride by flourine. J Inorg Nucl Chem 10(1-2):74CrossRefGoogle Scholar
  14. 14.
    Zachariasen W (1948) The crystal structure of U2F9. J Chem Phys 16(4):425CrossRefGoogle Scholar
  15. 15.
    Zachariasen WH (1949) Crystal chemical studies of the 5f-series of elements. XI. the crystal structure of α-UF5 and of β-UF5. Acta Crystallogr 2(5):296CrossRefGoogle Scholar
  16. 16.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S et al (1993) General atomic and molecular electronic structure system. J Comb Chem 14(11):1347CrossRefGoogle Scholar
  17. 17.
    Han YK, Hirao K (2000) Density functional studies of UO\(_{2}^{2+}\) and AnF6 (an= U, NP, and PU) using scalar-relativistic effective core potentials. J Chem Phys 113(17):7345CrossRefGoogle Scholar
  18. 18.
    Jorge F, Canal Neto A, Camiletti G, Machado S (2009) Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130(6):064108CrossRefPubMedGoogle Scholar
  19. 19.
    Martins L, Jorge F, Franco M, Ferreira I (2016) All-electron gaussian basis sets of double zeta quality for the actinides. J Chem Phys 145(24):244113CrossRefPubMedGoogle Scholar
  20. 20.
    Wei F, Wu GS, Schwarz WE, Li J (2011) Excited states and absorption spectra of UF6: A raspt2 theoretical study with spin–orbit coupling. J Chem Theory Comput 7(10):3223CrossRefPubMedGoogle Scholar
  21. 21.
    Xiao H, Hu HS, Schwarz WE, Li J (2010) Theoretical investigations of geometry, electronic structure and stability of uo6: octahedral uranium hexoxide and its isomers. J Phys Chem A 114(33):8837CrossRefPubMedGoogle Scholar
  22. 22.
    Paine RT, McDowell RS, Asprey LB, Jones LH (1976) Vibrational spectroscopy of matrix-isolated UF6 and UF5. J Chem Phys 64(7):3081CrossRefGoogle Scholar
  23. 23.
    Jones LH, Ekberg S (1977) Potential constants and structure of the UF5 monomer. J Chem Phys 67(6):2591CrossRefGoogle Scholar
  24. 24.
    Compton R (1977) On the formation of positive and negative ions in gaseous UF6. J Chem Phys 66(10):4478CrossRefGoogle Scholar
  25. 25.
    Nikitin M, Tsirel’nikov V (1993) Determination of enthalpy of formation of gaseous uranium pentafluoride. High Temp 30(5):730Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bárbara M. T. C. Peluzo
    • 1
  • Breno R. L. Galvão
    • 1
  1. 1.Departamento de QuímicaCentro Federal de Educaçção Tecnológica de Minas Gerais, CEFET-MGBelo HorizonteBrazil

Personalised recommendations