Advertisement

Copper-catalyzed cyclopropanation reaction of but-2-ene

  • Beatriz Angulo
  • Clara I. Herrerías
  • Zoel Hormigón
  • José Antonio Mayoral
  • Luis Salvatella
Original Paper
  • 34 Downloads

Abstract

The mechanism of the copper(I)-catalyzed cyclopropanation reaction for methyl diazoacetate with both (Z)- and (E)-but-2-ene stereoisomers has been studied using the 6-311++G(d,p) basis set by means of M06-2X and O3LYP functionals. According to both methods, the rate-limiting step is the formation of a copper-carbene intermediate, formed by association between methyl diazoacetate and bis(acetonitrile)-copper(I) ion with the concomitant extrusion of dinitrogen. Cis/trans diastereoselectivity for the cyclopropanation reaction of a 1,2-disubstituted alkene ((Z)-but-2-ene) has been theoretically studied for the first time through the proper location of transition states on the potential-energy surface with the O3LYP method, since no transition structures could be found with the M06-2X functional due to the extreme flatness of the potential-energy surface. The calculated stereoselectivities involving two acetonitrile ligands or one dichloromethane molecule show qualitative agreement with experimental data. This study allows attributing the origin of the selectivity to steric interactions between the ligands of the catalyst system and the olefin substituents. The comparison between the corresponding activation barriers for the direct insertion step shows a higher reactivity for the Z stereoisomer of but-2-ene, consistently with the larger reactant destabilization through steric interactions.

Keywords

Reaction mechanisms Cyclopropanation Copper Catalysis Stereoselective synthesis 

Notes

Acknowledgments

The Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) and the Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (Consejo Superior de Investigaciones Científicas (CSIC)–Universidad de Zaragoza) are thanked for the allocation of computer time. Financial support from Ministerio de Economía y Competitividad (MINECO) (Project CTQ2014-52367-R), Gobierno de Aragón, European Regional Development Fund (Consolidated Group E11), and European Social Fund is gratefully acknowledged.

Supplementary material

894_2018_3737_MOESM1_ESM.docx (104 kb)
ESM 1 (DOCX 104 kb)

References

  1. 1.
    Salaün J (2000) Top Curr Chem 207:1–67.  https://doi.org/10.1007/3-540-48255-5_1 CrossRefGoogle Scholar
  2. 2.
    Kulinkovich OG (2015) Cyclopropanes in organic synthesis. Wiley, Hoboken.  https://doi.org/10.1002/9781118978429 CrossRefGoogle Scholar
  3. 3.
    Lebel H, Marcoux J-F, Molinaro C, Charette AB (2003) Chem Rev 103:977–1050.  https://doi.org/10.1021/cr010007e CrossRefGoogle Scholar
  4. 4.
    Pellissier H (2008) Tetrahedron 64:7041–7095.  https://doi.org/10.1016/j.tet.2008.04.079 CrossRefGoogle Scholar
  5. 5.
    Bartoli G, Bencivenni G, Dalpozzo R (2014) Synthesis 46:979–1029.  https://doi.org/10.1055/s-0033-1340838 CrossRefGoogle Scholar
  6. 6.
    García JI, Salvatella L, Pires E, Fraile JM, Mayoral JA (2014) In: Knochel A, Holander GA (eds) Comprehensive organic synthesis II. Elsevier, Amsterdam.  https://doi.org/10.1016/B978-0-08-097742-3.00426-2 Google Scholar
  7. 7.
    Charette AB, Lebel H, Roy M-N (2014) In: Alexakis A, Krause N, Woodward S (eds) Copper-catalyzed asymmetric synthesis. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527664573.ch8 Google Scholar
  8. 8.
    Besora M, Braga AAC, Sameera WMC, Urbano J, Fructos MR, Pérez PJ, Maseras F (2015) J Organomet Chem 784:2–12.  https://doi.org/10.1016/j.jorganchem.2014.10.009 CrossRefGoogle Scholar
  9. 9.
    Salomon RG, Kochi JK (1973) J Am Chem Soc 95:3300–3310.  https://doi.org/10.1021/ja00791a038 CrossRefGoogle Scholar
  10. 10.
    Díaz-Requejo MM, Belderrain TR, Nicasio MC, Prieto F, Pérez PJ (1999) Organometallics 18:2601–2609.  https://doi.org/10.1021/om990270u CrossRefGoogle Scholar
  11. 11.
    Fraile JM, García JI, Martínez-Merino V, Mayoral JA, Salvatella L (2001) J Am Chem Soc 123:7616–7625.  https://doi.org/10.1021/ja003695c CrossRefGoogle Scholar
  12. 12.
    Fraile JM, García JI, Gissibl A, Mayoral JA, Pires E, Reiser O, Roldán M, Villalba I (2007) Chem Eur J 13:8830–8839.  https://doi.org/10.1002/chem.200700681 CrossRefGoogle Scholar
  13. 13.
    Straub BF, Gruber I, Rominger F, Hofmann P (2003) J Organomet Chem 684:124–143.  https://doi.org/10.1016/S0022-328X(03)00520-5 CrossRefGoogle Scholar
  14. 14.
    Özen C, Tüzün NŞ (2008) Organometallics 27:4600–4610.  https://doi.org/10.1021/om800094k CrossRefGoogle Scholar
  15. 15.
    Meng Q, Li M, Tang D, Shen W, Zhang J (2004) J Mol Struct (THEOCHEM) 711:193–199.  https://doi.org/10.1016/j.theochem.2004.06.050 CrossRefGoogle Scholar
  16. 16.
    Drudis-Solé G, Maseras F, Lledós A, Vallribera A, Moreno-Mañas M (2008) Eur J Org Chem 2008:5614–5621.  https://doi.org/10.1002/ejoc.200800762 CrossRefGoogle Scholar
  17. 17.
    Rasmussen T, Jensen JF, Østergaard N, Tanner D, Ziegler T, Norrby P-O (2002) Chem Eur J 8:177–184.  https://doi.org/10.1002/1521-3765(20020104)8:1<177::AID-CHEM177>3.0.CO;2-H CrossRefGoogle Scholar
  18. 18.
    García JI, Jiménez-Osés G, Mayoral JA (2011) Chem Eur J 17:529–539.  https://doi.org/10.1002/chem.201001262 CrossRefGoogle Scholar
  19. 19.
    Cohen AJ, Handy NC (2001) Mol Phys 99:607–615.  https://doi.org/10.1080/00268970010023435 CrossRefGoogle Scholar
  20. 20.
    Handy NC, Cohen AJ (2001) Mol Phys 99:403–412.  https://doi.org/10.1080/00268970010018431 CrossRefGoogle Scholar
  21. 21.
    Fraile JM, García JI, Herrerías CI, Pires E (2017) Synthesis 49:1444–1460.  https://doi.org/10.1055/s-0036-1588699 CrossRefGoogle Scholar
  22. 22.
    Angulo B, Fraile JM, Herrerías CI, Mayoral JA (2017) RSC Adv 7:19417–19424.  https://doi.org/10.1039/c7ra01017f CrossRefGoogle Scholar
  23. 23.
    Liang HC, Kim E, Incarvito CD, Rheingold AL, Karlin KD (2002) Inorg Chem 41:2209–2212.  https://doi.org/10.1021/ic010816g CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, WallingfordGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01. Gaussian, WallingfordGoogle Scholar
  26. 26.
    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241.  https://doi.org/10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  27. 27.
    Bozic-Weber B, Chaurin V, Constable EC, Housecroft CE, Meuwly M, Neuburger M, Rudd JA, Schönhofer E, Siegfried L (2012) Dalton Trans 41:14157–14169.  https://doi.org/10.1039/C2DT31159C CrossRefGoogle Scholar
  28. 28.
    Tamasi G, Bonechi C, Rossi C, Cini R, Magnani A (2016) J Coord Chem 69:404–424.  https://doi.org/10.1080/00958972.2015.1132416 CrossRefGoogle Scholar
  29. 29.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527.  https://doi.org/10.1021/j100377a021 CrossRefGoogle Scholar
  30. 30.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161.  https://doi.org/10.1063/1.456010 CrossRefGoogle Scholar
  31. 31.
    Laury ML, Carlson MJ, Wilson AK (2012) J Comput Chem 33:2380–2387.  https://doi.org/10.1002/jcc.23073 CrossRefGoogle Scholar
  32. 32.
    Hu S-Z, Zhou Z-H, Xie Z-X, Robertson BE (2014) Z Krist 229:517–523.  https://doi.org/10.1515/zkri-2014-1726 Google Scholar
  33. 33.
    Stojanović M, Aleksić J, Baranac-Stojanović M (2015) Tetrahedron 71:5119–5123.  https://doi.org/10.1016/j.tet.2015.06.22 CrossRefGoogle Scholar
  34. 34.
    Leung BO, Reid DL, Armstrong DA, Rauk A (2004) J Phys Chem A 108:2720–2725.  https://doi.org/10.1021/jp030265a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC–Universidad de ZaragozaZaragozaSpain

Personalised recommendations