Advertisement

Electronic and optical properties of C24, C12X6Y6, and X12Y12 (X = B, Al and Y = N, P)

  • Debolina Paul
  • Jyotirmoy Deb
  • Barnali Bhattacharya
  • Utpal Sarkar
Original Paper
  • 67 Downloads

Abstract

Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X = B, Al; Y = N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities.

Graphical abstract

Possible applications of doped C24 fullerene

Keywords

Fullerene C24 Heterofullerenes Electronic properties Chemical reactivity Optical properties 

Notes

Acknowledgements

US thanks ICTP, Trieste, Italy for hosting him as a regular associate. JD thanks DST, New Delhi for providing him with a DST-INSPIRE fellowship. BB thanks CSIR for providing her with a CSIR-SRF. This research is supported by Assam University, Silchar, India.

Supplementary material

894_2018_3735_MOESM1_ESM.docx (114 kb)
ESM 1 (DOCX 114 kb)

References

  1. 1.
    Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822Google Scholar
  2. 2.
    Kroto HW, Heath J, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163Google Scholar
  3. 3.
    Zaghmarzi FA, Zahedi M, Mola A, Abedini S, Arshadi S, Ahmadzadeh S, Etminan N, Younesi O, Rahmanifar E, Yoosefian M (2017) Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations. Phys E 87:51–58CrossRefGoogle Scholar
  4. 4.
    Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Keuren EV, Holloway BC, Drees M (2009) Endohedral fullerenes for organic photovoltaic devices. Nat Mater 8:208–212CrossRefGoogle Scholar
  5. 5.
    Liddell PA, Kodis G, Andréasson J, de la Garza L, Bandyopadhyay S, Mitchell RH, Moore TA, Moore AL, Gust D (2004) Photonic switching of photoinduced electron transfer in a dihydropyrene−porphyrin−fullerene molecular triad. J Am Chem Soc 126:4803–4811Google Scholar
  6. 6.
    Gobbi M, Pascual A, Golmar F, Llopis R, Vavassori P, Casanova F, Hueso LE (2012) C60/NiFe combination as a promising platform for molecular spintronics. Org Electron 13:366–372CrossRefGoogle Scholar
  7. 7.
    Chen Z, Ma L, Liu Y, Chen C (2012) Applications of functionalized fullerenes in tumor theranostics. Theranostics 2:238–250CrossRefGoogle Scholar
  8. 8.
    Orlova MA, Trofimova TP, Orlov AP, Shatalov OA (2013) Perspectives of fullerene derivatives in PDT and radiotherapy of cancers. Br J Med Med Res 3:1731–1756CrossRefGoogle Scholar
  9. 9.
    Montellano A, Da Ros T, Bianco A, Prato M (2011) Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041CrossRefGoogle Scholar
  10. 10.
    Niu M, Yu G, Yang G, Chen W, Zhao X, Huang X (2014) Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg Chem 53:349–358Google Scholar
  11. 11.
    Paul D, Deb J, Bhattacharya B, Sarkar U (2017) Density functional theory study of pristine and transition metal doped fullerene. AIP Conf Proc 1832:050107(1–3)Google Scholar
  12. 12.
    Paul D, Deb J, Bhattacharya B, Sarkar U (2017) The influence of the substitution of transition metals on pristine C20: a DFT study. Int J Nanosci 16:1760026(1–5)Google Scholar
  13. 13.
    Bhusal S, Zope RR, Bhatta S, Baruah T (2016) Electronic and optical properties of VScN@C68 fullerene. J Phys Chem C 120:27813–27819CrossRefGoogle Scholar
  14. 14.
    Jensen F, Toftlund H (1993) Structure and stability of C24 and B12N12 isomers. Chem Phys Lett 201:89–96CrossRefGoogle Scholar
  15. 15.
    Rad AS, Ayub K (2016) A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nanocages. J Alloys Compd 672:161–169Google Scholar
  16. 16.
    Nakamura S (1996) In: Yoshikawa A, Kishino K, Kobayashi M, Yasuda T (eds) Proceedings of international symposium on blue laser and light emitting diodes. Chiba University Press, Chiba, p 119Google Scholar
  17. 17.
    Oku T, Nishiwaki A, Narita I (2004) Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci Technol Adv Mater 5:635–638CrossRefGoogle Scholar
  18. 18.
    Oku T, Kuno M, Kitahara H, Narita I (2001) Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int J Inorg Mater 3:597–612CrossRefGoogle Scholar
  19. 19.
    Wu HS, Zhang FQ, Xu XH, Zhang CJ, Jiao H (2003) Geometric and energetic aspects of aluminum nitride cages. J Phys Chem A 107:204–209CrossRefGoogle Scholar
  20. 20.
    Rad AS, Ayub K (2017) DFT study of boron trichloride adsorption on the surface of Al12N12 nanocluster. Mol Phys 115:879–884CrossRefGoogle Scholar
  21. 21.
    Beheshtian J, Peyghan AA, Bagheri Z (2012) Quantum chemical study of fluorinated AlN nanocage. Appl Surf Sci 259:631–636CrossRefGoogle Scholar
  22. 22.
    Ferreira V, Alves H (2008) Boron phosphide as the buffer-layer for the epitaxial III-nitride growth: a theoretical study. J Cryst Growth 310:3973–3978CrossRefGoogle Scholar
  23. 23.
    Feng PY, Balasubramanian K (1999) Spectroscopic properties of Al2P2, Al2P2 +, and Al2P2 and comparison with their Ga and in analogues. J Phys Chem A 103:9093–9099CrossRefGoogle Scholar
  24. 24.
    Archibong EF, Gregorius RM, Alexander SA (2000) Structures and electron detachment energies of AlP2 and Al2P2 . Chem Phys Lett 321:253–261CrossRefGoogle Scholar
  25. 25.
    Fan XF, Zhu Z, Shen ZX, Kuo J-L (2008) On the use of bond-counting rules in predicting the stability of C12B6N6 fullerene. J Phys Chem C 112:15691–15696CrossRefGoogle Scholar
  26. 26.
    Pattanayak J, Kar T, Scheiner S (2003) Comparison of BN and AlN substitution on the structure and electronic and chemical properties of C60 fullerene. J Phys Chem A 107:4056–4065CrossRefGoogle Scholar
  27. 27.
    Bhattacharya B, Singh NB, Mondal R, Sarkar U (2015) Electronic and optical properties of pristine and boron–nitrogen doped graphyne nanotubes. Phys Chem Chem Phys 17:19325–19341CrossRefGoogle Scholar
  28. 28.
    Bhattacharya B, Singh NB, Sarkar U (2015) Pristine and BN doped graphyne derivatives for UV light protection. Int J Quantum Chem 115:820–829CrossRefGoogle Scholar
  29. 29.
    Ching WY, Huang MZ, Xu YN, Harter WG, Chan FT (1991) First-principles calculation of optical properties of C60 in the fcc lattice. Phys Rev Lett 67:2045–2048CrossRefGoogle Scholar
  30. 30.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Portal DS (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  31. 31.
    Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731CrossRefGoogle Scholar
  32. 32.
    Chan B, Yim WL (2013) Accurate computation of cohesive energies for small to medium-sized gold clusters. J Chem Theory Comput 9:1964–1970CrossRefGoogle Scholar
  33. 33.
    Shukla MK, Leszczynski J (2006) A density functional theory study on the effect of shape and size on the ionization potential and electron affinity of different carbon nanostructures. Chem Phys Lett 428:317–320CrossRefGoogle Scholar
  34. 34.
    Szwacki NG, Sadrzadeh A, Yakobson BI (2007) B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 166804(1–4):98Google Scholar
  35. 35.
    Bhusal S, Rodriguez Lopez JA, Ulises Reveles J, Baruah T, Zope RR (2017) Electronic and structural study of ZnxSx [x= 12, 16, 24, 28, 36, 48, 96, and 108] cage structures. J Phys Chem A 121:3486–3493Google Scholar
  36. 36.
    Garg P, Kumar S, Choudhuri I, Mahata A, Pathak B (2016) Hexagonal planar CdS monolayer sheet for visible light photocatalysis. J Phys Chem C 120:7052–7060Google Scholar
  37. 37.
    Ding Y, Wang Y (2013) Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C 117:18266–18278Google Scholar
  38. 38.
    Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J Mol Model 18:2653–2658CrossRefGoogle Scholar
  39. 39.
    Ghara M, Pan S, Deb J, Kumar A, Sarkar U, Chattaraj PK (2016) A computational study on structure, stability and bonding in noble gas bound metal nitrates, sulfates and carbonates (metal = Cu, Ag, Au). J Chem Sci 10:1537–1548Google Scholar
  40. 40.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807Google Scholar
  41. 41.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  42. 42.
    Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190CrossRefGoogle Scholar
  43. 43.
    Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  44. 44.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  45. 45.
    Elango M, Parthasarathi R, Subramanian V, Sarkar U, Chattaraj PK (2005) Formaldehyde decomposition through profiles of global reactivity indices. J Mol Struct (THEOCHEM) 723:43–52CrossRefGoogle Scholar
  46. 46.
    Sarkar U, Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Toxicity analysis of polychlorinated dibenzofurans through global and local electrophilicities. J Mol Struct (THEOCHEM) 758:119–125CrossRefGoogle Scholar
  47. 47.
    Chattaraj PK, Sarkar U (2003) Ground- and excited-states reactivity dynamics of hydrogen and helium atoms. Int J Quantum Chem 91:633–650CrossRefGoogle Scholar
  48. 48.
    Chattaraj PK, Sarkar U, Parthasarathi R, Subramanian V (2005) DFT study of some aliphatic amines using generalized philicity concept. Int J Quantum Chem 101:690–702CrossRefGoogle Scholar
  49. 49.
    Chattaraj PK, Maiti B, Sarkar U (2003) Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons. J Chem Sci 115:195–218CrossRefGoogle Scholar
  50. 50.
    Sarkar U, Khatua M, Chattaraj PK (2012) A tug-of-war between electronic excitation and confinement in a dynamical context. Phys Chem Chem Phys 14:1716–1727CrossRefGoogle Scholar
  51. 51.
    Khatua M, Sarkar U, Chattaraj PK (2014) Reactivity dynamics of confined atoms in the presence of an external magnetic field. Eur Phys J D 68:22 (1-9) CrossRefGoogle Scholar
  52. 52.
    Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Educ 64:561–567CrossRefGoogle Scholar
  53. 53.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  54. 54.
    Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018CrossRefGoogle Scholar
  55. 55.
    Pegu D, Deb J, Alsenoy CV, Sarkar U (2017) Theoretical investigation of electronic, vibrational, and nonlinear optical properties of 4-fluoro-4-hydroxybenzophenone. Spectrosc Lett 50:232–243CrossRefGoogle Scholar
  56. 56.
    Saha SK, Deb J, Sarkar U, Paul MK (2017) Hockey-stick-shaped mesogens based on 1,3,4-thiadiazole: synthesis, mesomorphism, photophysical and DFT studies. Liq Cryst 44:2203–2221CrossRefGoogle Scholar
  57. 57.
    Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072CrossRefGoogle Scholar
  58. 58.
    Yang L-M, Ravindran P, Vajeeston P, Tilset M (2012) Properties of IRMOF-14 and its analogues M-IRMOF-14 (M = Cd, alkaline earth metals): electronic structure, structural stability, chemical bonding, and optical properties. Phys Chem Chem Phys 14:4713–4723Google Scholar
  59. 59.
    Yang L-M, Ravindran P, Vajeeston P, Tilset M (2012) Ab initio investigations on the crystal structure, formation enthalpy, electronic structure, chemical bonding, and optical properties of experimentally synthesized isoreticular metal-organic framework-10 and its analogues:M-IRMOF-10 (M = Zn, Cd, Be, Mg, Ca, Sr and Ba). RSC Adv 2:1618–1631Google Scholar
  60. 60.
    Paul D, Bhattacharya B, Deb J, Sarkar U (2018) Optical properties of C28 fullerene cage: a DFT study. AIP Conf Proc 1953:030236(1–3)Google Scholar
  61. 61.
    Bhattacharya B, Sarkar U (2016) The effect of boron and nitrogen doping in electronic, magnetic, and optical properties of graphyne. J Phys Chem C 120:26793–26806Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAssam UniversitySilcharIndia

Personalised recommendations