Advertisement

A genetic algorithm survey on closed-shell atomic nitrogen clusters employing a quantum chemical approach

  • M. X. Silva
  • F. T. Silva
  • B. R. L. Galvão
  • J. P. Braga
  • J. C. Belchior
Original Paper
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Abstract

The DFT potential energy hypersurfaces of closed-shell nitrogen clusters up to ten atoms are explored via a genetic algorithm (GA). An atom–atom distance threshold parameter, controlled by the user, and an “operator manager” were added to the standard evolutionary procedure. Both B3LYP and PBE exchange-correlation functionals with 6-31G basis set were explored using the GA. Further evaluation of the structures generated were performed through reoptimization and vibrational analysis within MP2 and CCSD(T) levels employing larger correlation consistent basis set. The binding energies of all stable structures found are calculated and compared, as well as their energies relative to the dissociation into N2, \(\mathrm {N}_{3}^{+}\) and \(\mathrm {N}_{3}^{-}\) molecules. With the present approach, we confirmed some previously reported polynitrogen structures and predicted the stability of new ones. We can also conclude that the energy surface profile clearly depends on the calculation method employed.

Keywords

Polynitrogen High energy density materials Electronic structure Genetic algorithm 

Notes

Acknowledgements

This work has the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Supplementary material

894_2018_3724_MOESM1_ESM.pdf (351 kb)
(PDF 351 KB)

References

  1. 1.
    Lauderdale WJ, Stanton JF, Bartlett RJ (1992) Stability and energetics of metastable molecules: tetraazatetrahedrane (N4), hexaazabenzene (N6), and octaazacubane (N8). J Phys Chem 96:1173CrossRefGoogle Scholar
  2. 2.
    Wang LJ, Mezey PG, Zgierski MZ (2004) Stability and the structures of nitrogen clusters N10. Chem Phys Lett 391:338CrossRefGoogle Scholar
  3. 3.
    Ren Y, Wang X, Wong NB, Tian AM, Ding FJ, Zhang L (2001) Theoretical study of the N10 clusters without double bonds. Int J Quantum Chem 82:34CrossRefGoogle Scholar
  4. 4.
    Samartzis PC, Wodtke AM (2006) All-nitrogen chemistry: how far are we from N60? Int Rev Phys Chem 25:527CrossRefGoogle Scholar
  5. 5.
    Choi C, Yoo HW, Goh EM, Cho SG, Jung Y (2016) Ti(N5)4 as a potential nitrogen-rich stable high-energy density material. J Phys Chem A 120:4249CrossRefPubMedGoogle Scholar
  6. 6.
    Serapian SA, Bearpark MJ, Bresme F (2013) The shape of Au8: gold leaf or gold nugget? Nanoscale 5:6445CrossRefPubMedGoogle Scholar
  7. 7.
    Barron H, Fernández-Seivane L, Weissker HC, López-Lozano X (2013) Trends and properties of 13-atom Ag–Au nanoalloys i: Structure and electronic properties. J Phys Chem C 117:21450CrossRefGoogle Scholar
  8. 8.
    Davis JBA, Horswell SL, Johnston RL (2014) Global optimization of 8–10 atom palladium–iridium nanoalloys at the DFT level. J Phys Chem A 118:208CrossRefPubMedGoogle Scholar
  9. 9.
    Heard CJ, Heiles S, Vajda S, Johnston RL (2014) PdnAg(4−n) and PdnPt(4−n) clusters on MgO (100): a density functional surface genetic algorithm investigation. Nanoscale 6:11777CrossRefPubMedGoogle Scholar
  10. 10.
    Johnston RL (2002) Atomic and molecular clusters. Taylor & Francis, LondonCrossRefGoogle Scholar
  11. 11.
    Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845CrossRefPubMedGoogle Scholar
  12. 12.
    Silva FT, Galvão BRL, Voga GP, Silva MX, Rodrigues DDC, Belchior JC (2015) Exploring the mp2 energy surface of nanoalloy clusters with a genetic algorithm: Application to sodium-potassium. Chem Phys Lett 639:135CrossRefGoogle Scholar
  13. 13.
    Kronik L, Vasiliev I, Jain M, Chelikowsky JR (2001) Ab initio structures and polarizabilities of sodium clusters. J Chem Phys 115:4322CrossRefGoogle Scholar
  14. 14.
    Schmidt MW, Baldridge KK, Boats JA, Elbert ST, Gorgon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JrJ (1993) General atomic and molecular electronic structure system. J Comput Chem 14: 1347CrossRefGoogle Scholar
  15. 15.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. WIREs Comput Mol Sci 2:242CrossRefGoogle Scholar
  16. 16.
    Cai W, Feng Y, Shao X, Pan Z (2002) Optimization of Lennard–Jones atomic clusters. J Mol Struct Theochem 579:229CrossRefGoogle Scholar
  17. 17.
    Deaven DM, Ho KM (1995) Molecular geometry optimization with a genetic algorithm. Phys Rev Lett 75:288CrossRefPubMedGoogle Scholar
  18. 18.
    Chen Z, Jiang X, Li J, Li S (2013) A sphere-cut-splice crossover for the evolution of cluster structures. J Chem Phys 138:214303CrossRefPubMedGoogle Scholar
  19. 19.
    Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111CrossRefGoogle Scholar
  20. 20.
    Ye T, Xu R, Huang W (2011) Global optimization of binary Lennard–Jones clusters using three perturbation operators. J Chem Inf Model 51:572CrossRefPubMedGoogle Scholar
  21. 21.
    Rondina GG, Silva JLF (2013) Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles. J Chem Inf Model 53:2282CrossRefPubMedGoogle Scholar
  22. 22.
    Kim HG, Choi SK, Lee HM (2008) New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters. J Chem Phys 128 :144702CrossRefPubMedGoogle Scholar
  23. 23.
    Johnston RL (2003) Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalt Trans (22): 4193–4207.  https://doi.org/10.1039/B305686D
  24. 24.
    Lee TJ, Rice JE (1991) Theoretical characterization of tetrahedral N4. J Chem Phys 94:1215CrossRefGoogle Scholar
  25. 25.
    Francl MM, Chesick JP (1990) The N4 molecule and its metastability. J Phys Chem 94:526CrossRefGoogle Scholar
  26. 26.
    Glukhovtsev MN, Schleyer PVR (1993) The N4 molecule has an open-chain triplet C2h structure. Int J Quantum Chem 46:119CrossRefGoogle Scholar
  27. 27.
    Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J Am Chem Soc 123:6308CrossRefPubMedGoogle Scholar
  28. 28.
    Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5. Angew Chem 114:3177CrossRefGoogle Scholar
  29. 29.
    Butler RN, Stephens JC, Burke LA (2003) First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: a new n-dearylation of 1-(p-methoxyphenyl) pyrazoles, a 2-(p-methoxyphenyl) tetrazole and application of the methodology to 1-(p-methoxyphenyl) pentazole. Chem Commun, pp. 1016–1017Google Scholar
  30. 30.
    Glukhovtsev MN, Schleyer PVR (1992) Structures, bonding and energies of N6 isomers. Chem Phys Lett 198:547CrossRefGoogle Scholar
  31. 31.
    Hirshberg B, Gerber RB (2012) Decomposition mechanisms and dynamics of N6: Bond orders and partial charges along classical trajectories. Chem Phys Lett 531:46CrossRefGoogle Scholar
  32. 32.
    Tobita M, Bartlett RJ (2001) Structure and stability of N6 isomers and their spectroscopic characteristics. J Phys Chem A 105 :4107CrossRefGoogle Scholar
  33. 33.
    Li QS, Liu YD (2002) Theoretical studies of the N6 potential energy surface. J Phys Chem A 106:9538CrossRefGoogle Scholar
  34. 34.
    Brinck T, Rahm M (2014) Theoretical design of green energetic materials: Predicting stability, detection, synthesis and performance, in green energetic materials. Wiley, ChichesterCrossRefGoogle Scholar
  35. 35.
    Law CK, Li WK, Wang X, Tian A, Wong N (2002) A Gaussian-3 study of N7+ and N7 isomers. J Mol Struct Theochem 617:121CrossRefGoogle Scholar
  36. 36.
    Liu YD, Zhao JF, Li QS (2002) Structures and stability of N7+ and N7 clusters. Theor Chem Acc 107:140CrossRefGoogle Scholar
  37. 37.
    Li QS, Zhao JF (2002) A theoretical study on decomposition pathways of N7+ and N7- clusters. J Phys Chem A 106:5928CrossRefGoogle Scholar
  38. 38.
    Leininger ML, Sherrill CD, SchaeferIII HF (1995) N8: A structure analogous to pentalene, and other high-energy density minima. J Phys Chem 99:2324CrossRefGoogle Scholar
  39. 39.
    Wang LJ, Xu WG, Li QS (2000) Stability of N8 isomers and isomerization reaction of N8 (C2v) to N8 (Cs). J Mol Struct Theochem 531:135CrossRefGoogle Scholar
  40. 40.
    Gagliard L, Evangelisti S, Roos BO, Widmark PO (1998) A theoretical study of ten N8 isomers. J Mol Struct Theochem 428:1CrossRefGoogle Scholar
  41. 41.
    Gagliardi L, Evangelisti S, Widmark PO, Roos BO (1997) A theoretical study of the N8 cubane to N8 pentalene isomerization reaction. Theor Chem Acc 97:136CrossRefGoogle Scholar
  42. 42.
    Tian A, Ding F, Zhang L, Xie Y, SchaeferIII HF (1997) New isomers of N8 without double bonds. J Phys Chem A 101:1946CrossRefGoogle Scholar
  43. 43.
    Trinquier G, Malrieu JP, Daudey JP (1981) Ab initio study of the regular polyhedral molecules N4, P4, As4, N8, P8 and As8. Chem Phys Lett 80:552CrossRefGoogle Scholar
  44. 44.
    Engelke R, Stine JR (1990) Is N8 cubane stable. J Phys Chem 94:5689CrossRefGoogle Scholar
  45. 45.
    Chung G, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104:5647CrossRefGoogle Scholar
  46. 46.
    Nguyen MT, Ha TK (1996) Azidopentazole is probably the lowest-energy N8 species—a theoretical study. Chem Ber 129:1157CrossRefGoogle Scholar
  47. 47.
    Li QS, Wang LJ, Xu WG (2000) Structures and stability of N9, N9 and N9+ clusters. Theor Chem Acc 104:67CrossRefGoogle Scholar
  48. 48.
    Li QS, Wang LJ (2001) A quantum chemical theoretical study of decomposition pathways of N9 (C2v) and N9+ (C2v) clusters. J Phys Chem A 105:1203CrossRefGoogle Scholar
  49. 49.
    Thompson MD, Bledson TM, Strout DL (2002) Dissociation barriers for odd-numbered acyclic nitrogen molecules N9 and N11. J Phys Chem A 106:6880CrossRefGoogle Scholar
  50. 50.
    Strout DL (2002) Acyclic N10 fails as a high energy density material. J Phys Chem A 106:816CrossRefGoogle Scholar
  51. 51.
    Chen C, Sun KC, Shyu SF (1999) Theoretical study of various N10 structures. J Mol Struct Theochem 459:113CrossRefGoogle Scholar
  52. 52.
    Manaa MR (2000) Toward new energy-rich molecular systems: from N10 to N60. Chem Phys Lett 331:262CrossRefGoogle Scholar
  53. 53.
    Chen C, Shyu SF (1999) Theoretical study of single-bonded nitrogen cluster-type molecules. Int J Quantum Chem 73:349CrossRefGoogle Scholar
  54. 54.
    Zhou H, Zheng W, Wang X, Ren Y, Wong NB, Shu Y, Tian A (2005) A Gaussian-3 investigation on the stabilities and bonding of the nine N10 clusters. J Mol Struct Theochem 732:139CrossRefGoogle Scholar
  55. 55.
    Dunn KM, Morokuma K (1995) Transition state for the dissociation of tetrahedral N4. J Chem Phys 102:4904CrossRefGoogle Scholar
  56. 56.
    Bittererová M, Östmark H, Brinck T (2002) A theoretical study of the azide (N3) doublet states. a new route to tetraazatetrahedrane. J Chem Phys 116:9740CrossRefGoogle Scholar
  57. 57.
    Seidl ET, III HFS (1988) Theoretical studies of oxygen rings: cyclotetraoxygen, O4. J Chem Phys 88:7043CrossRefGoogle Scholar
  58. 58.
    Gadzhiev OB, Ignatov SK, Kulikov MY, Feigin AM, Razuvaev AG, Sennikov PG, Schrems O (2013) Structure, energy, and vibrational frequencies of oxygen allotropes On (n ≤ 6) in the covalently bound and van der Waals forms: Ab initio study at the CCSD(T) level. J Chem Theory Comput 9:247CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. X. Silva
    • 1
  • F. T. Silva
    • 2
  • B. R. L. Galvão
    • 3
  • J. P. Braga
    • 1
  • J. C. Belchior
    • 1
  1. 1.Departamento de Química-ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Química Fundamental-CCENUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Departamento de QuímicaCentro Federal de Educação Tecnológica de Minas Gerais, CEFET-MGBelo HorizonteBrazil

Personalised recommendations