Advertisement

Probing the robustness of the charge-charge transfer-dipolar polarization model and infrared intensities

  • Arnaldo F. Silva
  • Leonardo J. Duarte
  • Roy E. Bruns
Original Paper
  • 25 Downloads
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Abstract

The robustness of the QTAIM charge-charge transfer-dipolar polarization parameters for the CH, CF, and CCl stretching and bending distortions of the fluoro- and chloromethanes was determined comparing results calculated at three quantum levels, MP2/6–311G++(3d,3p), QCISD/cc-pVTZ, and QCISD/aug-cc-pVTZ. The correlation coefficients between the MP2/6–311G++G(d,p) and QCISD/cc-pVTZ results with those of QCISD/aug-cc-pVTZ intensities are excellent, 0.934 and 0.988, respectively, showing that the parameters converge with increasing quality of the quantum levels. In spite of numerical differences, the interpretation of the electronic structure changes occurring for these vibrations is the same for all three quantum levels. Accurate determination of charge transfer-counterpolarization effects is important for properly describing electron density changes for small molecular distortions.

Keywords

QTAIM/CCTDP Molecular infrared spectroscopy Chlorofluoromethanes Charge transfer Counterpolarization 

Supplementary material

894_2018_3723_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 21 kb)

References

  1. 1.
    Silva AF, Richter WE, Meneses HGC, Faria SHDM, Bruns RE (2012) How accessible is atomic charge information from infrared intensities? A QTAIM/CCFDF Interpretation. J Chem Phys 116:8238–8249CrossRefGoogle Scholar
  2. 2.
    Silva AF, Richter WE, Meneses HGC, Bruns RE (2014) Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model. Phys Chem Chem Phys 16:23224–23232.  https://doi.org/10.1039/C4CP02922D CrossRefGoogle Scholar
  3. 3.
    Duarte LJ, Richter WE, Silva AF, Bruns RE (2017) Quantum theory of atoms in molecules charge–charge transfer–dipolar polarization classification of infrared intensities. J Phys Chem A 121:8115–8123.  https://doi.org/10.1021/acs.jpca.7b08031 CrossRefGoogle Scholar
  4. 4.
    Richter W, da Silva Filho A, Vidal LN, Bruns RE (2016) Characteristic infrared intensities of carbonyl stretching vibrations. Phys Chem Chem Phys 18:17575–17585.  https://doi.org/10.1039/C6CP01035K CrossRefGoogle Scholar
  5. 5.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  6. 6.
    Bader RFW, Larouche A, Gatti C, Carroll MT, MacDougall PJ, Wiberg KB (1987) Properties of atoms in molecules: dipole moments and transferability of properties. J Chem Phys 87(2):1142.  https://doi.org/10.1063/1.453294 CrossRefGoogle Scholar
  7. 7.
    Haiduke RLA, Bruns RE (2005) An atomic charge-charge flux-dipole flux atom-in-molecule decomposition for molecular dipole-moment derivatives and infrared fundamental intensities. J Phys Chem A 109(11):2680–2688.  https://doi.org/10.1021/jp045357u CrossRefGoogle Scholar
  8. 8.
    César PH, Faria SHDM, Da Silva JV, Haiduke RLA, Bruns RE (2005) A charge-charge flux-dipole flux decomposition of the dipole moment derivatives and infrared intensities of the AB3 (a = N, P; B = H, F) molecules. Chem Phys 317(1):35–42.  https://doi.org/10.1016/j.chemphys.2005.05.029 CrossRefGoogle Scholar
  9. 9.
    Da-Silva JV, Haiduke RLA, Bruns RE (2006) QTAIM charge - charge flux - dipole flux models for the infrared fundamental intensities of the Fluorochloromethanes. J Phys Chem A 110:4839–4845CrossRefGoogle Scholar
  10. 10.
    Da-Silva JV, Faria SHDM, Haiduke RLA, Bruns RE (2007) QTAIM charge-charge flux-dipole flux models for the infrared fundamental intensities of difluoro- and dichloroethylenes. J Phys Chem A 111(3):515–520.  https://doi.org/10.1021/jp065422v CrossRefGoogle Scholar
  11. 11.
    Faria SHDM, Jr JVDS, Haiduke RLA, Vidal LN, Vazquez PAM, Bruns RE (2007) Quantum theory of atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of X2CY (X = H, F, cl; Y = O, S) molecules. J Phys Chem A 111(32):7870–7875.  https://doi.org/10.1021/jp072763f CrossRefGoogle Scholar
  12. 12.
    Da Silva JV, Oliveira AE, Hase Y, Bruns RE (2009) Quantum theory atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of benzene and hexafluorobenzene. J Phys Chem A 113(27):7972–7978.  https://doi.org/10.1021/jp903255e CrossRefGoogle Scholar
  13. 13.
    Richter WE, Silva AF, Pitoli ACL, Vazquez PAM, Bruns RE (2013) QTAIM charge-charge flux-dipole flux models for the fundamental infrared intensities of BF3and BCl3. Spectrochim Acta - Part A Mol Biomol Spectrosc 116:136–142.  https://doi.org/10.1016/j.saa.2013.07.005 CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, revision C.02. Gaussian Inc., PittsburghGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2016) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  16. 16.
    Gomes TCF, Silva JV, Vidal LN, Vazquez PAM, Bruns RE (2008) Implementação computacional do modelo Carga-Fluxo de Carga-Fluxo de Dipolo para cálculo e interpretação das intensidades do espectro infravermelho. Quim Nova 31(7):1750–1754CrossRefGoogle Scholar
  17. 17.
    Popelier PLA (1996) MORPHY, a program for an automated “atoms in molecules” analysis. Comput Phys Commun 93(2–3):212–240.  https://doi.org/10.1016/0010-4655(95)00113-1 CrossRefGoogle Scholar
  18. 18.
    Keith TA (2015) AIMAll. aim.tkgristmill.com

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Arnaldo F. Silva
    • 1
  • Leonardo J. Duarte
    • 1
  • Roy E. Bruns
    • 1
  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations