Assessment of density prediction methods based on molecular surface electrostatic potential

  • Ayushi Nirwan
  • Alka Devi
  • Vikas D. GhuleEmail author
Original Paper


We compared the effectiveness of different molecular surface electrostatic potential (MESP)-based methods for calculating the density of CHNO explosives. Densities computed for 221 CHNO explosives of different chemical nature and functional groups and compared with the experimental values. The CHNO explosives in this work are divided into seven groups as group I nitrate-esters, group II nitramines, group III azides, group IV energetic materials containing benzene ring, group V energetic materials containing caged and strained rings, group VI energetic materials containing heterocyclic backbone, and group VII are the energetic materials containing fused ring. The computed densities using molecular volume method, Lee method, Kim method, Politzer method, and Rice method judged with experimental data indicates that Politzer and Rice method can be applied for the prediction of density. This study will be useful in selecting an MESP-based approach for the density estimation and directing research efforts towards the development of new CHNO explosives.

Graphical Abstract

The effectiveness of different molecular surface electrostatic potential (MESP)-based methods such as Lee method, Kim method, Politzer method, and Rice method for calculating the density of 221 CHNO explosives is assessed. The CHNO explosives are divided into seven groups as nitrate-esters, nitramines, azides, energetic materials containing- benzene ring, -caged and strained rings, -heterocyclic backbone, and -fused ring


CHNO explosives Density MESP Electrostatic potential Nitrate-esters 



This work is supported by a grant from the DST-SERB, Government of India (Young Scientists, No. SB/FT/CS-110/2014). Alka Devi thanks CSIR for research fellowship (No. 09/1050(0005) 2015-EMR-1).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

894_2018_3702_MOESM1_ESM.docx (865 kb)
ESM 1 (DOCX 864 kb)


  1. 1.
    Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45:3584–3601CrossRefGoogle Scholar
  2. 2.
    Gao H, Shreeve JM (2011) Azole-based energetic salts. Chem Rev 111:7377–7436CrossRefPubMedGoogle Scholar
  3. 3.
    Göbel M, Klapötke TM (2009) Development and testing of energetic materials: the concept of high densities based on the trinitroethyl functionality. Adv Funct Mater 19:347–365CrossRefGoogle Scholar
  4. 4.
    Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35CrossRefGoogle Scholar
  5. 5.
    Tarver CM (1979) Density estimations for explosives and related compounds using the group additivity approach. J Chem Eng Data 24:136–145CrossRefGoogle Scholar
  6. 6.
    Cady HH (1979) Estimation of the density of organic explosives from their structural formulas. Report LA-7760-MS, Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  7. 7.
    Stine JR (1981) Predictions of crystal densities of organic explosives by group additivity. Report LA-8920, Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  8. 8.
    Ammon HL (2008) Updated atom/functional group and atom-code volume additivity parameters for the calculation of crystal densities of single molecules, organic salts, and multi-fragment materials containing H, C, B, N, O, F, S, P, cl, Br, and I. Propellants Explos Pyrotech 33:92–102CrossRefGoogle Scholar
  9. 9.
    Ammon HL, Mitchell S (1998) A new atom/functional group volume additivity data base for the calculation of the crystal densities of C, H, N, O and F-containing compounds. Propell Explos Pyrotech 23:260–265CrossRefGoogle Scholar
  10. 10.
    Keshavarz MH (2007) New method for calculating densities of nitroaromatic explosive compounds. J Hazard Mater 145:263–269CrossRefPubMedGoogle Scholar
  11. 11.
    Keshavarz MH (2009) Novel method for predicting densities of polynitro arene and polynitro heteroarene explosives in order to evaluate their detonation performance. J Hazard Mater 165:579–588CrossRefPubMedGoogle Scholar
  12. 12.
    Ye C, Shreeve JM (2007) Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A 111:1456–1461CrossRefPubMedGoogle Scholar
  13. 13.
    Ye C, Shreeve JM (2008) New atom/group volume additivity method to compensate for the impact of strong hydrogen bonding on densities of energetic materials. J Chem Eng Data 53:520–524CrossRefGoogle Scholar
  14. 14.
    Hofmann DWM (2002) Fast estimation of crystal densities. Acta Cryst B57:489–493CrossRefGoogle Scholar
  15. 15.
    Xiong Y, Ding J, Yu D, Peng C, Liu H, Hu Y (2011) Volumetric connectivity index: a new approach for estimation of density of ionic liquids. Ind Eng Chem Res 50:14155–14161CrossRefGoogle Scholar
  16. 16.
    Beaucamp S, Marchet N, Mathieu D, Agafonov V (2003) Calculation of the crystal densities of molecular salts and hydrates using additive volumes for charged groups. Acta Cryst B59:498–504CrossRefGoogle Scholar
  17. 17.
    Holden JR, Du D, Ammon HL (1993) Predictions of possible crystal structures for C-, H-, N-, O-, and F-containing organic compounds. J Comput Chem 14:422–437CrossRefGoogle Scholar
  18. 18.
    Mutharajan H, Sivabalan R, Talawar MB, Asthana SN (2004) Prediction of densities of acyclic and cyclic nitramines, nitrate esters and nitroaliphatic compounds for evaluation of their detonation performance. J Hazard Mater A112:17–33CrossRefGoogle Scholar
  19. 19.
    Zhang JY, Du HC, Wang F, Gong XD, Ying SJ (2012) Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptacyclo [, 11. 15, 9] pentadecane. J Mol Model 18:2369–2376CrossRefPubMedGoogle Scholar
  20. 20.
    Xu XJ, Zhu WH, Gong XD, Xiao HM (2008) Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid. Sci China B 51:427–439CrossRefGoogle Scholar
  21. 21.
    Yan SQ, Li XH (2014) Quantum chemical studies on structure and detonation performance of bis(2,2-dinitropropyl ethylene)formal. Chin J Chem Phys 27:45–50CrossRefGoogle Scholar
  22. 22.
    Liu Y, Gong XD, Wang L, Wang G, Xiao HM (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2′,4,4′,6,6′-hexanitroazobenzene derivatives. J Phys Chem A 115:1754–1762CrossRefPubMedGoogle Scholar
  23. 23.
    Xu XJ, Zhu WH, Xiao HM (2008) Theoretical predictions on the structures and properties for polynitrohexaazaadamantanes (PNHAAs) as potential high energy density compounds (HEDCs). J Mol Struct THEOCHEM 853:1–6CrossRefGoogle Scholar
  24. 24.
    Wang F, Du HC, Zhang JY, Gong XD (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high-energy density material. J Phys Chem A 115:11788–11795CrossRefPubMedGoogle Scholar
  25. 25.
    Ghule VD, Radhakrishnan S, Jadhav PM, Tewari SP (2011) Theoretical studies on nitrogen-rich energetic azoles. J Mol Model 17:1507–1515CrossRefPubMedGoogle Scholar
  26. 26.
    Ghule VD, Radhakrishnan S, Jadhav PM (2011) Computational studies on tetrazole derivatives as potential high-energy materials. Struct Chem 22:775–782CrossRefGoogle Scholar
  27. 27.
    Ghule VD, Radhakrishnan S, Jadhav PM, Pandey RK Computational design and structure–property relationship studies on heptazines. J Mol Model 17:2927–2937Google Scholar
  28. 28.
    Mighell AD, Himes VL, Rodgers JR (1983) Space-group frequencies for organic compounds. Acta Crystallogr A 39:737–740CrossRefGoogle Scholar
  29. 29.
    Wilson AJC (1988) Space groups rare for organic structures. I. Triclinic, monoclinic and orthorhombic crystal classes. Acta Crystallogr A 44:715–724CrossRefGoogle Scholar
  30. 30.
    Srinivasan R (1992) On space-group frequencies. Acta Crystallogr A 48:917–918CrossRefGoogle Scholar
  31. 31.
    Baur WH, Kassner D (1992) The perils of cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr B 48:356–369CrossRefGoogle Scholar
  32. 32.
    Murray JS, Brinck T, Politzer P (1996) Relationships of molecular surface electrostatic potentials to some macroscopic properties. Chem Phys 204:289–299CrossRefGoogle Scholar
  33. 33.
    Pan JF, Lee YW (2004) Crystal density prediction for cyclic and cage compounds. Phys Chem Chem Phys 6:471–473CrossRefGoogle Scholar
  34. 34.
    Kim CK, Cho SG, Kim CK, Park HY, Zhang H, Lee HW (2008) Prediction of densities for solid energetic molecules with molecular surface electrostatic potentials. J Comput Chem 29:1818–1824CrossRefPubMedGoogle Scholar
  35. 35.
    Kim CK, Cho SG, Kim CK, Kim MR, Lee HW (2013) Prediction of physicochemical properties of organic molecules using semi-empirical methods. Bull Kor Chem Soc 34:1043–1046CrossRefGoogle Scholar
  36. 36.
    Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101CrossRefGoogle Scholar
  37. 37.
    Rice BM, Byrd EFC (2013) Evaluation of electrostatic descriptors for predicting crystalline density. J Comput Chem 34:2146–2151CrossRefPubMedGoogle Scholar
  38. 38.
    Kim CK, Cho SG, Li J, Park BH, Kim CK (2016) Prediction of crystal density and explosive performance of high-energy-density molecules using the modified MSEP scheme. Bull Kor Chem Soc 37:1683–1689CrossRefGoogle Scholar
  39. 39.
    Rice BM, Sorescu DC (2004) Assessing a generalized CHNO intermolecular potential through ab initio crystal structure prediction. J Phys Chem B 108:17730–17739CrossRefGoogle Scholar
  40. 40.
    Moxnes JF, Hansen FK, Jensen TL, Sele ML, Unneberg E (2017) A computational study of density of some high-energy molecules. Propell Explos Pyrotech 42:204–212CrossRefGoogle Scholar
  41. 41.
    Kim CK, Lee K, Hyun KH, Park HJ, Kwack IY, Kim CK, Lee HW, Lee B (2004) Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials. J Comput Chem 25:2073–2079CrossRefPubMedGoogle Scholar
  42. 42.
    Rice BM, Hare JJ, Byrd EFC (2007) Accurate predictions of crystal densities using quantum mechanical molecular volumes. J Phys Chem A 111:10874–10879CrossRefPubMedGoogle Scholar
  43. 43.
    Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2007) Crystal density predictions for nitramines based on quantum chemistry. J Hazard Mater 141:280–288CrossRefPubMedGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Kurant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salwador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision E.01. Gaussian Inc, WallingfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of Technology KurukshetraKurukshetraIndia

Personalised recommendations