An investigation into possible quantum chaos in the H2 molecule under intense laser fields via Ehrenfest phase space (EPS) trajectories

  • Mainak Sadhukhan
  • B. M. Deb
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


By employing the Ehrenfest "phase space" trajectory method for studying quantum chaos, developed in our laboratory, the present study reveals that the H2 molecule under intense laser fields of three different intensities, I = 1 × 1014 W/cm2, 5 × 1014 W/cm2, and 1 × 1015 W/cm2, does not show quantum chaos. A similar conclusion is also reached through the Loschmidt echo (also called quantum fidelity) calculations reported here for the first time for a real molecule under intense laser fields. Thus, a long-standing conjecture about the possible existence of quantum chaos in atoms and molecules under intense laser fields has finally been tested and not found to be valid in the present case.


Quantum chaos Intense laser fields Strong-field excitation (quantum optics) Density-functional theory Atomic and molecular physics H2 molecule 



We gratefully acknowledge IISER-Kolkata and S. N. Bose National Centre for Basic Sciences, Kolkata, for computer facilities. M. S. thanks the CSIR, New Delhi and SNBNCBS for financial support. B. M. D. thanks the Indian National Science Academy, New Delhi, for financial support and Visva-Bharati University, Santiniketan for hospitality.


  1. 1.
    Gutzwiller MC (1990) Chaos in classical and quantum mechanics. Springer, BerlinGoogle Scholar
  2. 2.
    Peres A (1995) Quantum theory: concepts and methods. Springer, BerlinGoogle Scholar
  3. 3.
    Stöckmann HJ (1999) Quantum chaos: an introduction. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Casati G, Prosen T (2009) Quantum chaos. In: Meyers RA (ed) Encyclopedia of complexity and systems science, part 17. Springer, Berlin, p 7164Google Scholar
  5. 5.
    Haake F (2010) Quantum signatures of chaos. Springer, BerlinGoogle Scholar
  6. 6.
    Wimberger S (2014) Nonlinear dynamics and quantum chaos: an introduction. Springer, BerlinGoogle Scholar
  7. 7.
    Gupta N, Deb BM (2006) Does the classically chaotic Henon–Heiles oscillator exhibit quantum chaos under intense laser fields? Pramana J Phys 67:1055–1071CrossRefGoogle Scholar
  8. 8.
    Gupta N, Deb BM (2006) Quantum dynamics of an electron moving in coupled quartic and coupled double-well oscillators under intense laser fields. Chem Phys 327:351–360CrossRefGoogle Scholar
  9. 9.
    Sadhukhan M, Deb BM (2011) A dynamical signature of quantum chaos in hydrogen atom under strong, oscillating magnetic fields. Eur Phys Lett 94:50008/1–50008/6CrossRefGoogle Scholar
  10. 10.
    Sadhukhan M, Deb BM (2017) Ehrenfest ‘phase-space’ trajectories and quantum chaos in He atom under strong, oscillating magnetic fields: an application of time-dependent quantum fluid density functional theory (TDQFDFT). Mol Phys 115:815–824CrossRefGoogle Scholar
  11. 11.
    Benenti G, Casati G, Strini G (2007) Principles of quantum computation and information: basic tools and special topics. World Scientific, SingaporeCrossRefGoogle Scholar
  12. 12.
    Gorin T, Prosen T, Seligman TH, Žnidariĉ M (2006) Dynamics of Loschmidt echoes and fidelity decay. Phys Rep 435:33–156CrossRefGoogle Scholar
  13. 13.
    Boness T, Stocklin MMA, Monteiro TS (2007) Quantum chaos with spin-chains in pulsed magnetic fields. Prog Theor Phys Suppl 166:85–94Google Scholar
  14. 14.
    Jacquod Ph,  Petitjean C (2009) Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom. Adv Phys 58:67–196CrossRefGoogle Scholar
  15. 15.
    Goussev A, Jalabert RA, Pastawski HM, Wisniacki DA (2016) Loschmidt echo and time reversal in complex systems. Phil Trans R Soc A 374:20150383CrossRefPubMedGoogle Scholar
  16. 16.
    Gilder L (2009) The age of entanglement: when quantum physics was reborn. Knopf, New YorkGoogle Scholar
  17. 17.
    Deb BM, Chattaraj PK (1989) Density-functional and hydrodynamical approach to ion-atom collisions through a new generalized nonlinear Schrödinger equation. Phys Rev A 39:1696–1713CrossRefGoogle Scholar
  18. 18.
    Lakshmanan M, Rajasekar R (2003) Nonlinear dynamics. Springer, BerlinGoogle Scholar
  19. 19.
    Peres A (1984) Stability of quantum motion in chaotic and regular systems. Phys Rev A 30:1610–1615CrossRefGoogle Scholar
  20. 20.
    Dey BK, Deb BM (1995) Time-dependent quantum fluid dynamics of the photoionization of the He atom under an intense laser field. Int J Quant Chem 56:707–732Google Scholar
  21. 21.
    Dey BK, Deb BM (1998) Femtosecond quantum fluid dynamics of helium atom under an intense laser field. Int J Quant Chem 70:441–474CrossRefGoogle Scholar
  22. 22.
    Wadehra A, Deb BM (2006) Electron density changes and high harmonics generation in H2 molecule under intense laser fields. Eur Phys J D 39:141–155CrossRefGoogle Scholar
  23. 23.
    Sadhukhan M, Deb BM (2010) Variations in electron density and bonding in the lowest 1Σg state of H2 molecule under strong magnetic fields by using a time-dependent density functional theory. J Molec Struct Theochem 943:65–70CrossRefGoogle Scholar
  24. 24.
    Roy AK, Dey BK, Deb BM (1999) Direct calculation of ground-state electronic densities and properties of noble gas atoms through a single time-dependent hydrodynamical equation. Chem Phys Lett 308:523–531CrossRefGoogle Scholar
  25. 25.
    Deb BM, Ghosh SK (1987) Quantum fluid dynamical significance of the single-particle density. In: March NH, Deb BM (eds) The single-particle density in physics and chemistry. Academic, LondonGoogle Scholar
  26. 26.
    Sadhukhan M, Deb BM (2016) Dynamical deformations of the electron density in an H2 molecule under strong, oscillating magnetic fields: an application of time-dependent quantum fluid density functional theory. Mol Phys 114:3490–3507CrossRefGoogle Scholar
  27. 27.
    Lieb EH, Schrader R (2013) Current densities in density-functional theory. Phys Rev A 88:032516/1-032516/11CrossRefGoogle Scholar
  28. 28.
    Gross E (1961) Structure of a quantized vortex in boson systems. Il Nuovo Cimento 20:454–477CrossRefGoogle Scholar
  29. 29.
    Pitaevskii LP (1961) Vortex lines in an imperfect Bose gas. Soviet Phys JETP 13:451-454Google Scholar
  30. 30.
    Hammond BL, Lester, Jr. WA, Reynolds PJ (1994) Monte Carlo methods in ab initio quantum chemistry. World Scientific, SingaporeGoogle Scholar
  31. 31.
    Dey BK, Deb BM (1999) Direct ab initio calculation of ground-state electronic energies and densities for atoms and molecules through a time-dependent single hydrodynamical equation. J Chem Phys 110:6229–6239CrossRefGoogle Scholar
  32. 32.
    Sadhukhan M, Deb BM (2012) Atoms and molecules in strong magnetic fields. In: Roy AK (ed) Theoretical and computational developments in modern density functional theory. Nova Science, New YorkGoogle Scholar
  33. 33.
    Sadhukhan M, Panigrahi PK, Deb BM (2010) Dynamics of a hydrogen atom under a strong, time-dependent magnetic field. Eur Phys Lett 91:23001/1–23001/5CrossRefGoogle Scholar
  34. 34.
    Sadhukhan M, Deb BM (2014) Electron dynamics of a He atom in strong, oscillating magnetic fields. Phys Rev A 89:042516/1–042516/04251618CrossRefGoogle Scholar
  35. 35.
    Dey BK, Deb BM (1998) Stripped ion-helium atom collision dynamics within a time-dependent quantum fluid density functional theory. Int J Quant Chem 67:251–271CrossRefGoogle Scholar
  36. 36.
    Vikas, Deb BM (2004) Ground-state electronic energies and densities of atomic systems in strong magnetic fields through a time-dependent hydrodynamical equation. Int J Quant Chem 97:701–712CrossRefGoogle Scholar
  37. 37.
    Deb BM (2007) Erratum. Int J Quant Chem 108:820CrossRefGoogle Scholar
  38. 38.
    Ghosh SK, Deb BM (1994) Improved local density approximation to the exchange and kinetic energy functionals for atomic systems. J Phys B: At Mol Opt Phys 27:381–388Google Scholar
  39. 39.
    Singh R, Deb BM (1999) Developments in excited-state density functional theory. Phys Rep 311:47–94CrossRefGoogle Scholar
  40. 40.
    Sadhukhan M, Deb BM (2007) Aspects of electron dynamics in a helium atom under an intense laser field. Ind J Phys 81:969–981Google Scholar
  41. 41.
    Wadehra A, Vikas, Deb BM (2003) Electron in one-dimensional symmetric and asymmetric double-well potentials under intense/superintense laser fields: a numerical study based on time-dependent Schrödinger equation. J Chem Phys 119:6620–6628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical, Biological and Macromolecular SciencesS. N. Bose National Centre for Basic SciencesKolkataIndia
  2. 2.Physics and Materials Science Research UnitUniversité du LuxembourgLuxembourg CityLuxembourg
  3. 3.Publishing DepartmentVisva-Bharati UniversityKolkataIndia

Personalised recommendations