Advertisement

Analyzing ZnO clusters through the density-functional theory

  • Irineo-Pedro Zaragoza
  • Luis-Antonio Soriano-Agueda
  • Raymundo Hernández-Esparza
  • Rubicelia Vargas
  • Jorge Garza
Original Paper
  • 74 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

The potential energy surface of ZnnOn clusters (n = 2, 4, 6, 8) has been explored by using a simulated annealing method. For n = 2, 4, and 6, the CCSD(T)/TZP method was used as the reference, and from here it is shown that the M06-2X/TZP method gives the lowest deviations over PBE, PBE0, B3LYP, M06, and MP2 methods. Thus, with the M06-2X method we predict isomers of ZnnOn clusters, which coincide with some isomers reported previously. By using the atoms in molecules analysis, possible contacts between Zn and O atoms were found for all structures studied in this article. The bond paths involved in several clusters suggest that ZnnOn clusters can be obtained from the zincite (ZnO crystal), such an observation was confirmed for clusters with n = 2 − 9,18 and 20. The structure with n = 23 was obtained by the procedure presented here, from crystal information, which could be important to confirm experimental data delivered for n = 18 and 23.

Keywords

ZnO clusters DFT Exchange-correlation functionals Simulated annealing 

Notes

Acknowledgements

This article is dedicated to Professor Pratim Kumar Chattaraj for his contributions around density-functional-theory and as part of the celebration of his 60th anniversary. We thank the Laboratorio de Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa for access to their computer facilities. L.-A. S.-A. and R. H.-E. thank CONACYT, México, for the scholarships 265471 and 283251, respectively.

Supplementary material

894_2018_3691_MOESM1_ESM.pdf (119 kb)
(PDF 118 KB)

References

  1. 1.
    Cai F, Wang J, Yuan Z, Duan Y (2012) Magnetic-field effect on dye-sensitized ZnO nanorods-based solar cells. J Power Sources 216:269–272CrossRefGoogle Scholar
  2. 2.
    Wang Z (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys-Condes Matter 16:R829–R858CrossRefGoogle Scholar
  3. 3.
    Anandan S, Vinu A, Lovely KLPS, Gokulakrishnan N, Srinivasu P, Mori T, Murugesan V, Sivamurugan V, Ariga KA (2007) Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J Mol Catal A: Chem 266:149–157CrossRefGoogle Scholar
  4. 4.
    Dagdeviren C, Hwang S, Su Y, Kim S, Cheng H, Gur O, Haney R, Omenetto F, Huang Y, Rogers J (2013) Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9:3398–3404CrossRefGoogle Scholar
  5. 5.
    Patra A, Dutta A, Bhaumik A (2014) Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application. J Solid State Chem 215:135–142CrossRefGoogle Scholar
  6. 6.
    Senay V, Pat S, Korkmaz S, Aydogmus T, Elmas S, Ozen S, Ekem N, Balbag M (2014) ZnO thin film synthesis by reactive radio frequency magnetron sputtering. Appl Surf Sci 318:2–5CrossRefGoogle Scholar
  7. 7.
    Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  8. 8.
    Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  9. 9.
    Lee C, Yang W, Parr R (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  10. 10.
    Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  11. 11.
    Stephens P, Devlin F, Chabalowski C, Frisch M (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  12. 12.
    Matxain J, Fowler J, Ugalde J (2000) Small clusters of II-VI materials: ZniOi, i = 1 − 9. Phys Rev A 62:053201CrossRefGoogle Scholar
  13. 13.
    Matxain J, Mercero J, Fowler J, Ugalde J (2003) Electronic excitation energies of ZniOi, clusters. J Am Chem Soc 123:9494–9499CrossRefGoogle Scholar
  14. 14.
    Wang B, Nagase S, Zhao J, Wang G (2007) Structural growth sequences and electronic properties of Zinc oxide clusters (ZnO)n (n = 2 − 18). J Phys Chem C 111:4956–4963CrossRefGoogle Scholar
  15. 15.
    Zhao M, Xia Y, Tan Z, Liu X, Mei L (2007) Design and energetic characterization of ZnO clusters from first-principles calculations. Phys Lett A 372:39–43CrossRefGoogle Scholar
  16. 16.
    Wang B, Wang X, Chen G, Nagase S, Zhao J (2008) Cage and tube structures of medium-sized zinc oxide clusters (ZnO)n (n = 24, 28, 36, and 48). J Chem Phys 128:144710CrossRefGoogle Scholar
  17. 17.
    Cheng X, Li F, Zhao Y (2009) A DFT investigation on ZnO clusters and nanostructures. J Mol Structure (Theochem) 894:121–127CrossRefGoogle Scholar
  18. 18.
    Wang X, Wang B, Tang L, Sai L, Zhao J (2010) What is atomic structures of (ZnO)34 magic cluster?. Phys Lett A 374:850–853CrossRefGoogle Scholar
  19. 19.
    Wang B, Wang X, Zhao J (2010) Atomic structure of the magic (ZnO)60 cluster: first-principles prediction of a sodalite motif for ZnO nanoclusters. J Phys Chem C 114:5741–5744CrossRefGoogle Scholar
  20. 20.
    Wang W, Xu S, Ye L, Lei W, Cui Y (2011) Theoretical investigation of ZnO and its doping clusters. J Mol Model 2011:1075–1080CrossRefGoogle Scholar
  21. 21.
    Trushin EV, Zilberberg IL, Bulgakov AV (2012) Structure and stability of small zinc oxide clusters. Phys Solid State 54:859–865CrossRefGoogle Scholar
  22. 22.
    Abdolhosseini-Sarsari I, Javad-Hashemifar S, Salamati H (2012) First-principles study of ring to cage structural crossover in small ZnO clusters. J Phys: Condens Matter 24:505502Google Scholar
  23. 23.
    Gunaratne K, Berkdemir C, Harmon C, Castleman A Jr (2012) Investigating the relative stabilities and electronic properties of small zinc oxide clusters. J Phys Chem A 116:12429–12437CrossRefGoogle Scholar
  24. 24.
    Yong Y, Wang Z, Liu K, Song B, He P (2012) Structures, stabilities, and magnetic properties of Cu-doped ZnnOn (n = 3,9,12) clusters: a theoretical study. Comput Theor Chem 989:90–96CrossRefGoogle Scholar
  25. 25.
    Flores-Hidalgo MA, Glossman-Mitnik D, Galvan DH, Barraza-Jimenez D (2013) Computational study of cage like (ZnO)12 cluster using hybrid and hybrid meta functionals. J Chin Chem Soc 60:1082–1091CrossRefGoogle Scholar
  26. 26.
    Koyasu K, Komatsu K, Misaizu F (2013) Structural transition of zinc oxide cluster cations: smallest tube like structure at (ZnO)\(_{6}^{+}\). J Chem Phys 139:164308CrossRefGoogle Scholar
  27. 27.
    Woodley S, Sokol A, Catlow C, Al-Sunaidi A, Woodley S (2013) Structural and optical properties of Mg and Cd-doped ZnO nanoclusters. J Phys Chem C 117:27127–27145CrossRefGoogle Scholar
  28. 28.
    Heinzelmann J, Koop A, Proch S, Ganteför G, Lazarski R, Sierka M (2014) Cage-like nanoclusters of ZnO probed by time-resolved photoelectron spectroscopy and theory. J Phys Chem Lett 5:2642–2648CrossRefGoogle Scholar
  29. 29.
    Lazarski R, Sierka M, Heinzelmann J, Koop A, Sedlak R, Proch S, Ganteför G (2015) CdO and ZnO clusters as potential building blocks for cluster-assembled materials: a combined experimental and theoretical study. J Phys Chem C 119:6886–6895CrossRefGoogle Scholar
  30. 30.
    Chen M, Straatsma T, Fang Z, Dixon D (2016) Structural and electronic property study of (ZnO)n, n <= 168: transition from zinc oxide molecular clusters to ultrasmall nanoparticles. J Phys Chem C 120:20400–20418CrossRefGoogle Scholar
  31. 31.
    Jain A, Kumar V, Kawazoe Y (2006) Ring structures of small ZnO clusters. Comput Mater Sci 36:258–262CrossRefGoogle Scholar
  32. 32.
    Al-Sunaidi A, Sokol A, Catlow C, Woodley S (2008) Structures of zinc oxide nanoclusters: as found by revolutionary algorithm techniques. J Phys Chem C 112:18860–18875CrossRefGoogle Scholar
  33. 33.
    Pérez J, Florez E, Hadad C, Fuentealba P, Restrepo A (2008) Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. J Phys Chem A 112(25):5749–5755CrossRefGoogle Scholar
  34. 34.
    Pérez J, Hadad C, Restrepo A (2008) Structural studies of the water tetramer. Int J Quantum Chem 108:1653–1659CrossRefGoogle Scholar
  35. 35.
    (2012) Stewart Computational Chemistry, Colorado Springs, CO, USA Mopac. https://OpenMOPAC.net
  36. 36.
    García-Hernández E, Flores-Moreno R, Vázquez-Mayagoitia A, Vargas R, Garza J (2016) Initial stage of the degradation of three common neonicotinoids: theoretical prediction of charge transfer sites. New J Chem 41:965–974CrossRefGoogle Scholar
  37. 37.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Truhlar D (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101CrossRefGoogle Scholar
  40. 40.
    Moller C, Plesset M (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:0618–0622CrossRefGoogle Scholar
  41. 41.
    Barbieri P, Fantin P, Jorge F (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys 104:2945–2954CrossRefGoogle Scholar
  42. 42.
    Machado S, Camiletti G, Canal-Neto A, Jorge F, Jorge R (2009) Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: application in DFT and CCSD(T) calculations of molecular properties. Mol Phys 107:1713–1727CrossRefGoogle Scholar
  43. 43.
    Bartlett R, Shavitt I, Purvis G (1979) Quartic force-field of H2O determined by many-body methods that include quadruple excitation effects. J Chem Phys 71:281–291CrossRefGoogle Scholar
  44. 44.
    Bartlett R (1981) Many-body perturbation-theory and cluster theory for electron correlation in molecules. Ann Rev Phys Chem 32:359–401CrossRefGoogle Scholar
  45. 45.
    Hirata S (2003) Tensor contraction engine: abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories. J Phys Chem A 107:9887–9897CrossRefGoogle Scholar
  46. 46.
    Balabanov N, Peterson K (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3D elements Sc-Zn. J Chem Phys 123:064107CrossRefGoogle Scholar
  47. 47.
    Hay P, Wadt W (1985) Abinitio effective core potentials for molecular calculations—potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82:270–283CrossRefGoogle Scholar
  48. 48.
    Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma T, Dam H, Wang D, Nieplocha J, Apra E, Windus T, de Jong W (2010) NWChem: a comprehensive and scalable open-source solution for large-scale molecular simulations. Comput Phys Comm 181:1477–1489CrossRefGoogle Scholar
  49. 49.
    Bader R (1994) Principle of stationary action and the definition of a proper open system. Phys Rev B 49:13348–13356CrossRefGoogle Scholar
  50. 50.
    Hernández-Esparza R, Mejia-Chica S, Zapata-Escobar A, Guevara-García A, Martínez-Melchor A, Hernández-Pérez J, Vargas R, Garza J (2014) Grid-based algorithm to search critical points, in the electron density, accelerated by graphics processing units. J Comput Chem 35:2272–2278CrossRefGoogle Scholar
  51. 51.
    Hernández-Esparza R, Vázquez-Mayagoitia A, Soriano-Agueda L-A, Vargas R, Garza J (2018) GPUs as boosters to analyze scalar and vector fields in quantum chemistry. Int J Quantum Chem.  https://doi.org/10.1002/qua.25671
  52. 52.
    Kihara K, Donnay G (1985) Anharmonic thermal vibrations on ZnO. Can Mineral 23:647–654Google Scholar
  53. 53.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving x-H...F-y systems. J Chem Phys 117:5529–5542CrossRefGoogle Scholar
  54. 54.
    Lü X, Xu X, Wang N, Zhang Q, Ehara M, Nakatsuji H (1998) Cluster modeling of metal oxides: how to cut out a cluster? Chem Phys Lett 291:445–452CrossRefGoogle Scholar
  55. 55.
    Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, ReadingGoogle Scholar
  56. 56.
    Ouvrard C, Price S (2004) Toward crystal structure prediction for conformationally flexible molecules: the headaches illustrated by aspirin. Cryst Growth Des 4:1119–1127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México Campus Instituto Tecnológico de TlalnepantlaTlalnepantla de BazMéxico
  2. 2.Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaIztapalapaMéxico

Personalised recommendations