Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines

  • Juanfeng Lu
  • Tingting Lu
  • Xinyun Zhao
  • Xi ChenEmail author
  • Chang-guo Zhan
Original Paper


The acid dissociation constants and 1H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pKa values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pKa values are discussed in this paper. The present work provides a new way to predict the pKa values of organic/biochemical compounds.

Graphical abstract

The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pKa values


1H NMR chemical shieldings pKa Organic acid Amine Linear correlation 



This research was supported in part by the National Natural Science Foundation of China (grant no. 21273089) and the Special Fund for Basic Scientific Research of Central Colleges, South-Central University for Nationalities (CZY14004).

Supplementary material

894_2018_3690_MOESM1_ESM.doc (302 kb)
ESM 1 (DOC 301 kb)


  1. 1.
    Slater AM (2014) The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases. J Comput Aided Mol Des 28(10):1031–1034. CrossRefPubMedGoogle Scholar
  2. 2.
    Lu H, Chen X, Zhan CG (2007) First-principles calculation of pK a for cocaine, nicotine, neurotransmitters, and anilines in aqueous solution. J Phys Chem B 111(35):10599–10605.
  3. 3.
    Bashford D, Karplus M (1990) pK a’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29(44):10219–10225.
  4. 4.
    Jorgensen WL, Briggs JM, Gao J (1987) A priori calculations of pK a’s for organic compounds in water. The pK a of ethane. J Am Chem Soc 109(22):6857–6858.
  5. 5.
    Hassanali A (1978) Chemical predictions from pK a values. J Chem Educ 55(6):378–382.
  6. 6.
    Wang Y, Ho TG, Bertinetti D, Neddermann M, Franz E, Mo GCH, Schendowich LP, Sukhu A, Spelts RC, Zhang J, Herberg FW, Kennedy EJ (2014) Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem Biol 9(3):635–642. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Meloun M, Bordovska S (2007) Benchmarking and validating algorithms that estimate pK a values of drugs based on their molecular structures. Anal Bioanal Chem 389(4):1267–1281.
  8. 8.
    Albro PW, Parker CA, Abusteit EO, Mester TC, Hass JR, Sheldon YS, Corbin FT (1984) Determination of the pK a values of metribuzin and three of its metabolites: a comparison of spectrophotometric and potentiometric methods. J Agric Food Chem 32(2):212–217.
  9. 9.
    Garrido G, Koort E, Ràfols C, Bosch E, Rodima T, Leito I, Rosés M (2006) Acid−base equilibria in nonpolar media. Absolute pK a scale of bases in tetrahydrofuran. J Org Chem 71(24):9062–9067.
  10. 10.
    Bezencon J, Wittwer MB, Cutting B, Smiesko M, Wagner B, Kansy M, Ernst B (2014) pK a determination by H-1 NMR spectroscopy—an old methodology revisited. J Pharm Biomed Anal 93:147–155.
  11. 11.
    Zhang JH, Kleinoder T, Gasteiger J (2006) Prediction of pK a values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model 46(6):2256–2266.
  12. 12.
    Penhoat M (2013) Scope and limitations of a H-1 NMR method for the prediction of substituted phenols pK a values in water, CH3CN, DMF, DMSO and i-PrOH. Tetrahedron Lett 54(21):2571–2574.
  13. 13.
    Galstyan G, Knapp EW (2015) Computing pK a values of hexa-aqua transition metal complexes. J Comput Chem 36(2):69–78.
  14. 14.
    Thapa B, Schlegel HB (2016) Density functional theory calculation of pK a’s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J Phys Chem A 120(28):5726–5735.
  15. 15.
    Thapa B, Schlegel HB (2016) Theoretical calculation of pK a’s of selenols in aqueous solution using an implicit solvation model and explicit water molecules. J Phys Chem A 120(44):8916–8922.
  16. 16.
    Thapa B, Schlegel HB (2017) Improved pK a prediction of substituted alcohols, phenols, and hydroperoxides in aqueous medium using density functional theory and a cluster-continuum solvation model. J Phys Chem A 121(24):4698–4706.
  17. 17.
    Kromann JC, Larsen F, Moustafa H, Jensen JH (2016) Prediction of pK a values using the PM6 semiempirical method. PeerJ 4:e2335.
  18. 18.
    Sakalli I, Knapp EW (2015) pK a in proteins solving the Poisson–Boltzmann equation with finite elements. J Comput Chem 36(29):2147–2157.
  19. 19.
    Shields GC, Seybold PG (2014) Computational approaches for the prediction of pK a values. QSAR in environmental and health sciences. CRC, LondonGoogle Scholar
  20. 20.
    Olasz A, Mignon P, De Proft F, Veszprémi T, Geerlings P (2005) Effect of the π–π stacking interaction on the acidity of phenol. Chem Phys Lett 407(4):504–509.
  21. 21.
    Ugur I, Marion A, Parant S, Jensen JH, Monard G (2014) Rationalization of the pK a values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pK a’s. J Chem Inf Model 54(8):2200–2213.
  22. 22.
    Zhang S, Baker J, Pulay P (2010) A reliable and efficient first principles-based method for predicting pK a values. 1. Methodology. J Phys Chem A 114(1):425–431.
  23. 23.
    Jensen JH (2015) Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. Phys Chem Chem Phys 17(19):12441–12451. CrossRefPubMedGoogle Scholar
  24. 24.
    Rossini E, Knapp EW (2016) Proton solvation in protic and aprotic solvents. J Comput Chem 37(12):1082–1091. CrossRefPubMedGoogle Scholar
  25. 25.
    Paschal JW, Dorman DE (1978) Determination of pK a values using 15N and 13C nuclear magnetic resonance spectroscopy. The case of apramycin. Magn Reson Chem 11(12):632–634.
  26. 26.
    Zheng A, Deng F, Liu SB (2015) Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules. Annu Rep NMR Spectrosc 81:47–108.
  27. 27.
    Penhoat M (2013) Scope and limitations of a 1H NMR method for the prediction of substituted phenols pK a values in water, CH3CN, DMF, DMSO and i-PrOH. Tetrahedron Lett 54(21):2571–2574.
  28. 28.
    Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) First principles calculations of aqueous pK a values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pK a scale. J Phys Chem A 107(44):9380–9386.
  29. 29.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627. CrossRefGoogle Scholar
  30. 30.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789 CrossRefGoogle Scholar
  32. 32.
    Fox JL (1982) Robert Mulliken wins 1983 Priestley Medal. Chem Eng News Arch 60(27):20–21.
  33. 33.
    Jirouskova Z, Varekova RS, Vanek J, Koca J (2009) Electronegativity equalization method: parameterization and validation for organic molecules using the Merz–Kollman–Singh charge distribution scheme. J Comput Chem 30(7):1174–1178.
  34. 34.
    Mennucci B, Cammi R, Tomasi J (1998) Excited states and solvatochromic shifts within a nonequilibrium solvation approach: a new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level. J Chem Phys 109(7):2798–2807. CrossRefGoogle Scholar
  35. 35.
    Cossi M, Barone V (1998) Analytical second derivatives of the free energy in solution by polarizable continuum models. J Chem Phys 109(15):6246–6254. CrossRefGoogle Scholar
  36. 36.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032–3041. CrossRefGoogle Scholar
  37. 37.
    Szelejewska-Woźniakowska A, Chilmonczyk Z, Leś A, Cybulski J, Wawer I (1999) 13C cross-polarization magic angle spinning NMR and gauge-independent atomic orbital, coupled Hartree–Fock calculations of buspirone analogues: part 2. Hydrochlorides and perchlorates of 1-arylpiperazine-4-alkylimides. Solid State Nucl Magn Reson 14(1):59–65.
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JV Ortiz JB, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 program. Gaussian Inc., WallingfordGoogle Scholar
  39. 39.
    Advanced Chemistry Development, Inc. (2016) ACD/pK a DB. Advanced Chemistry Development, Inc., Toronto. Accessed 11 Jan 2016.
  40. 40.
    Liao C, Nicklaus MC (2009) Comparison of nine programs predicting pK a values of pharmaceutical substances. J Chem Inf Model 49(12):2801–2812.
  41. 41.
    Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) First principles calculations of aqueous pK a values for organic and inorganic acids using COSMO−RS reveal an inconsistency in the slope of the pK a scale. J Phys Chem A 107(44):9380–9386.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceSouth-Central University for NationalitiesWuhanPeople’s Republic of China
  2. 2.College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations