Blue M2: an intermediate melanoidin studied via conceptual DFT

  • Juan Frau
  • Daniel Glossman-MitnikEmail author
Original Paper


In this computational study, ten density functionals, viz. CAM-B3LYP, LC-ω PBE, M11, M11L, MN12L, MN12SX, N12, N12SX, ω B97X, and ω B97XD, related to the Def2TZVP basis sets, are assessed together with the SMD solvation model for calculation of the molecular properties and structure of blue-M2 intermediate melanoidin pigment. All the chemical reactivity descriptors for the system are calculated via conceptual density functional theory (DFT). The active sites suitable for nucleophilic, electrophilic, and radical attacks are selected by linking them with the Fukui function indices, electrophilic Parr functions, and condensed dual descriptors Δf(r), respectively. The prediction of the maximum absorption wavelength is considerably accurate relative to its experimental value. The study reveals that the MN12SX and N12SX density functionals are the most appropriate density functionals for predicting the chemical reactivity of the molecule under study.


Melanoidins Blue-M2 Conceptual DFT Chemical reactivity Dual descriptor Parr function Maximum absorption wavelength 



This work has been partially supported by CIMAV, SC, and Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) through Grant 219566-2014 for Basic Science Research. Daniel Glossman-Mitnik conducted this work while a Visiting Lecturer at the University of the Balearic Islands, whose support is gratefully acknowledged. This work was co-funded by the Ministerio de Economía y Competitividad (MINECO) and European Fund for Regional Development (FEDER) (CTQ2014-55835-R).


  1. 1.
    Argirova MD (2005) J Agric Food Chem 53(4):1210CrossRefPubMedGoogle Scholar
  2. 2.
    Glossman-Mitnik D (2013) Chem Cent J 7:155CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Salgado-Morán G, Ruiz-Nieto S, Gerli-Candia L, Flores-Holguín N, Favila-Pérez A, Glossman-Mitnik D (2013) J Mol Model 19:3507CrossRefPubMedGoogle Scholar
  4. 4.
    Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D (2013) J Phys Chem B 117(21):6639CrossRefGoogle Scholar
  5. 5.
    Glossman-Mitnik D (2013) Procedia Computer Science 18:816CrossRefGoogle Scholar
  6. 6.
    Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D (2013) J Chem 2013(8):850297Google Scholar
  7. 7.
    Cervantes-Navarro F, Glossman-Mitnik D (2013) J Theor Comput Chem 12(3):1350013CrossRefGoogle Scholar
  8. 8.
    Alvarado-González M, Flores-Holguín N, Glossman-Mitnik D (2013) Int J Photoenergy 2013 (8):424620Google Scholar
  9. 9.
    Glossman-Mitnik D (2014) Euro Int J Sci Techn 3(9):195Google Scholar
  10. 10.
    Glossman-Mitnik D (2014) J Mol Model 20(7):2316CrossRefPubMedGoogle Scholar
  11. 11.
    Glossman-Mitnik D (2014) In: Tiwari A, Turner AP (eds) Biosensors Nanotechnology. Wiley, Hoboken, pp 201–238Google Scholar
  12. 12.
    Glossman-Mitnik D (2014) In: Seminario JM (ed) Design and Applications of Nanomaterials for Sensors. Springer Science + Business Media, Dordrecht, pp 359–402Google Scholar
  13. 13.
    Martínez-Araya J I, Grand A, Glossman-Mitnik D (2015) Phys Chem Chem Phys 17:29764CrossRefGoogle Scholar
  14. 14.
    Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D (2015) Phys Chem Chem Phys 17:14122CrossRefPubMedGoogle Scholar
  15. 15.
    Martínez-Araya J I, Glossman-Mitnik D (2015) Chem Phys Lett 618:162CrossRefGoogle Scholar
  16. 16.
    Frau J, Muñoz F, Glossman-Mitnik D (2016) Chem Inf 2(2):7Google Scholar
  17. 17.
    Frau J, Muñoz F, Glossman-Mitnik D (2016) Molecules 21(12):1650CrossRefGoogle Scholar
  18. 18.
    Frau J, Muñoz F, Glossman-Mitnik D (2016) SDRP J Comput Chem Molecular Model 1(2):3Google Scholar
  19. 19.
    Mendoza-Huízar L H, Salgado-Morán G, Ramírez-Tagle R, Glossman-Mitnik D (2016) Comput Theor Chem 1075:54CrossRefGoogle Scholar
  20. 20.
    Frau J, Muñoz F, Glossman-Mitnik D (2017) Res J Chem Sci 7(5):46Google Scholar
  21. 21.
    Frau J, Glossman-Mitnik D (2017) British J Appl Sci Technol 21(1):32795CrossRefGoogle Scholar
  22. 22.
    Frau J, Muñoz F, Glossman-Mitnik D (2017) Quí,mica Nova 40(4):402Google Scholar
  23. 23.
    Frau J, Glossman-Mitnik D (2017) Research Journal of Life Sciences. Bioinformatics Pharmaceutical and Chemical Sciences 2(6):103Google Scholar
  24. 24.
    Frau J, Glossman-Mitnik D (2017) MOJ Drug Design Development & Therapy 1(1):00003Google Scholar
  25. 25.
    Frau J, Glossman-Mitnik D (2017) ChemXpress 10(1):120Google Scholar
  26. 26.
    Frau J, Glossman-Mitnik D (2017) Front Chem 5:16CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sastre S, Frau J, Glossman-Mitnik D (2017) Molecules 22(3):458CrossRefGoogle Scholar
  28. 28.
    Frau J, Ramis R, Glossman-Mitnik D (2017) Theor Chem Acc 136(4):39CrossRefGoogle Scholar
  29. 29.
    Frau J, Muñoz F, Glossman-Mitnik D (2017) J Theor Comput Chem 16(1):1750006CrossRefGoogle Scholar
  30. 30.
    Frau J, Glossman-Mitnik D (2017) Molecules 22(1):226CrossRefGoogle Scholar
  31. 31.
    Frau J, Glossman-Mitnik D (2017) Chem Cent J 11:8CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Frau J, Hernández-Haro N, Glossman-Mitnik D (2017) Chem Phys Lett 671:138CrossRefGoogle Scholar
  33. 33.
    Nursten H (ed) (2005) Th Maillard reaction - chemistry. Biochemistry and Implications (The Royal Society of Chemistry, CambridgeGoogle Scholar
  34. 34.
    Hayase F, Usui T, Watanabe H (2006) Mol Nutr Food Res 50(12):1171CrossRefPubMedGoogle Scholar
  35. 35.
    Sasaki S, Shirahashi Y, Nishiyama K, Watanabe H, Hayase F (2006) Bioscience 70(10):2529Google Scholar
  36. 36.
    Hayase F, Takahashi Y, Tominaga S, Miura M, Gomyo T, Kato H (1999) Biosci Biotechnol Biochem 63(8):1512CrossRefPubMedGoogle Scholar
  37. 37.
    Kato H, Hayase F (2002) Int Congr Ser 1245:3CrossRefGoogle Scholar
  38. 38.
    Shizuuchi S, Hayase F (2003) Biosci Biotechnol Biochem 67(1):54CrossRefPubMedGoogle Scholar
  39. 39.
    Usui T, Shizuuchi S, Watanabe H, Hayase F (2004) Biosci Biotechnol Biochem 68(1):247CrossRefPubMedGoogle Scholar
  40. 40.
    Liu SB (2009) Acta Phys -Chim Sin 25(3):590Google Scholar
  41. 41.
    Johnson P, Bartolotti L, Ayers P, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern Charge Density Analysis. Springer, New York, pp 715–764Google Scholar
  42. 42.
    Ayers P, Anderson J, Bartolotti L (2005) Int J Quantum Chem 101:520CrossRefGoogle Scholar
  43. 43.
    Gázquez J (2008) J Mex Chem Soc 52(1):3Google Scholar
  44. 44.
    Chermette H (1999) J Comput Chem 20:129CrossRefGoogle Scholar
  45. 45.
    Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  46. 46.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Toro-Labbé A (ed) (2007) Theoretical aspects of chemical reactivity. Elsevier Science, AmsterdamGoogle Scholar
  48. 48.
    Chattaraj P (ed) (2009) Chemical reactivity theory - a density functional view (CRC Press. Taylor & Francis Group, Boca RatonGoogle Scholar
  49. 49.
    Huzinaga S, Andzelm J, Klobukowski M, Radzio-Audzelm E, Sakai Y, Tatewaki H (1984) Gaussian Basis Sets for Molecular Calculations. Elsevier, AmsterdamGoogle Scholar
  50. 50.
    Easton R, Giesen D, Welch A, Cramer C, Truhlar D (1996) Theor Chem Acc 93:281CrossRefGoogle Scholar
  51. 51.
    Lewars E (2003) Computational chemistry - introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers, DordrechtGoogle Scholar
  52. 52.
    Young D (2001) Computational chemistry - a practical guide for applying techniques to real-world problems. Wiley, New YorkGoogle Scholar
  53. 53.
    Jensen F (2007) Introduction to Computational Chemistry, 2nd edn. Wiley, ChichesterGoogle Scholar
  54. 54.
    Cramer C (2004) Essentials of computational chemistry - theories and models, 2nd edn. Wiley, ChichesterGoogle Scholar
  55. 55.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115(8):3540CrossRefGoogle Scholar
  56. 56.
    Chai J, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1-3):51CrossRefGoogle Scholar
  58. 58.
    Heyd J, Scuseria G (2004) J Chem Phys 121(3):1187CrossRefPubMedGoogle Scholar
  59. 59.
    Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131(8):2818CrossRefPubMedGoogle Scholar
  60. 60.
    Stein T, Kronik L, Baer R (2009) J Chem Phys 131(24):244119CrossRefPubMedGoogle Scholar
  61. 61.
    Stein T, Eisenberg H, Kronik L, Baer R (2010) Phys Rev Lett 105(26):266802CrossRefPubMedGoogle Scholar
  62. 62.
    Karolewski A, Stein T, Baer R, Kümmel S (2011) J Chem Phys 134(15):151101CrossRefPubMedGoogle Scholar
  63. 63.
    Kuritz N, Stein T, Baer R, Kronik L (2011) J Chem Theory Comput 7(8):2408CrossRefPubMedGoogle Scholar
  64. 64.
    Ansbacher T, Srivastava HK, Stein T, Baer R, Merkx M, Shurki A (2012) Phys Chem Chem Phys 14:4109CrossRefPubMedGoogle Scholar
  65. 65.
    Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) J Chem Theory Comput 8(5):1515CrossRefPubMedGoogle Scholar
  66. 66.
    Stein T, Autschbach J, Govind N, Kronik L, Baer R (2012) J Phys Chem Lett 3(24):3740CrossRefPubMedGoogle Scholar
  67. 67.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68(8):3801CrossRefGoogle Scholar
  68. 68.
    Parr R, Pearson R (1983) J Am Chem Soc 105:7512CrossRefGoogle Scholar
  69. 69.
    Ayers P, Parr R, Pearson R (2006) J Chem Phys 194107:124Google Scholar
  70. 70.
    Parr R, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922CrossRefGoogle Scholar
  71. 71.
    Gázquez J, Cedillo A, Vela A (2007) J Phys Chem A 111(10):1966CrossRefPubMedGoogle Scholar
  72. 72.
    Chattaraj P, Chakraborty A, Giri S (2009) J Phys Chem A 113(37):10068CrossRefPubMedGoogle Scholar
  73. 73.
    Parr R, Yang W (1984) J Am Chem Soc 106:4049CrossRefGoogle Scholar
  74. 74.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205CrossRefPubMedGoogle Scholar
  75. 75.
    Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342CrossRefGoogle Scholar
  76. 76.
    Cárdenas C, Rabi N, Ayers P, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8660CrossRefPubMedGoogle Scholar
  77. 77.
    Ayers P, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240CrossRefPubMedGoogle Scholar
  78. 78.
    Morell C, Ayers P, Grand A, Gutiérrez-Oliva S, Toro-Labbé A (2008) Phys Chem Chem Phys 10:7239CrossRefPubMedGoogle Scholar
  79. 79.
    Morell C, Hocquet A, Grand A, Jamart-Grégoire B (2008) J Mol Struct (THEOCHEM) 849:46CrossRefGoogle Scholar
  80. 80.
    Domingo LR, Pérez P, Sáez J (2013) RSC Advances 3: 1486CrossRefGoogle Scholar
  81. 81.
    Chamorro E, Pérez P, Domingo LR (2013) Chem Phys Lett 582:141CrossRefGoogle Scholar
  82. 82.
    Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748CrossRefGoogle Scholar
  83. 83.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D, vol 01. Gaussian Inc, WallingfordGoogle Scholar
  84. 84.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefPubMedGoogle Scholar
  85. 85.
    Weigend F (2006) Phys Chem Chem Phys 8:1057CrossRefPubMedGoogle Scholar
  86. 86.
    Henderson TM, Izmaylov AF, Scalmani G, Scuseria GE (2009) The J Chem Phys 131(4):044108CrossRefPubMedGoogle Scholar
  87. 87.
    Peverati R, Truhlar DG (2011) J Phys Chem Lett 2(21):2810CrossRefGoogle Scholar
  88. 88.
    Peverati R, Truhlar DG (2012) J Phys Chem Lett 3(1):117CrossRefGoogle Scholar
  89. 89.
    Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(38):13171CrossRefPubMedGoogle Scholar
  90. 90.
    Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(47):16187CrossRefPubMedGoogle Scholar
  91. 91.
    Peverati R, Truhlar DG (2012) J Chem Theory Comput 8(7):2310CrossRefPubMedGoogle Scholar
  92. 92.
    Chai J, Head-Gordon M (2008) J Chem Phys 084106:128Google Scholar
  93. 93.
    Marenich A, Cramer C, Truhlar D (2009) J Phys Chem B 113:6378CrossRefPubMedGoogle Scholar
  94. 94.
    Halgren TA (1996) J Comput Chem 17(5-6):490CrossRefGoogle Scholar
  95. 95.
    Halgren TA (1996) J Comput Chem 17(5-6):520CrossRefGoogle Scholar
  96. 96.
    Halgren TA (1999) J Comput Chem 20(7):720CrossRefGoogle Scholar
  97. 97.
    Halgren TA, Nachbar RB (1996) J Comput Chem 17(5-6):587CrossRefGoogle Scholar
  98. 98.
    Halgren TA (1996) J Comput Chem 17(5-6):616CrossRefGoogle Scholar
  99. 99.
    Egger DA, Weissman S, Refaely-Abramson S, Sharifzadeh S, Dauth M, Baer R, Kümmel S, Neaton JB, Zojer E, Kronik L (2014) J Chem Theory Comput 10(5):1934CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Foster ME, Wong BM (2012) J Chem Theory Comput 8(8):2682CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Foster ME, Azoulay JD, Wong BM, Allendorf MD (2014) Chem Sci 5(5):2081CrossRefGoogle Scholar
  102. 102.
    Jacquemin D, Moore B, Planchat A, Adamo C, Autschbach J (2014) J Chem Theory Comput 10(4):1677CrossRefPubMedGoogle Scholar
  103. 103.
    Karolewski A, Kronik L, Kümmel S (2013) The J Chem Phys 138(20):204115CrossRefPubMedGoogle Scholar
  104. 104.
    Koppen JV, Hapka M, Szczeniak MM, Chalasinski G (2012) The J Chem Phys 137(11):114302CrossRefPubMedGoogle Scholar
  105. 105.
    Lima IT, Prado A d S, Martins JBL, de Oliveira Neto PH, Ceschin AM, da Cunha WF, da Silva Filho DA (2016) The J Phys Chem A 120(27):4944CrossRefPubMedGoogle Scholar
  106. 106.
    Manna AK, Lee MH, McMahon KL, Dunietz BD (2015) J Chem Theory Comput 11(3):1110CrossRefPubMedGoogle Scholar
  107. 107.
    Moore IIB, Autschbach J (2013) J Chem Theory Comput 9(11):4991CrossRefGoogle Scholar
  108. 108.
    Niskanen M, Hukka TI (2014) Phys Chem Chem Phys 16(26):13294CrossRefPubMedGoogle Scholar
  109. 109.
    Pereira TL, Leal LA, da Cunha WF, Timóteo de Sousa Júnior R, Ribeiro Junior LA, Antonio da Silva Filho D (2017) J Mol Model 23(3):71CrossRefPubMedGoogle Scholar
  110. 110.
    Phillips H, Zheng S, Hyla A, Laine R, Goodson IIIT, Geva E, Dunietz BD (2012) The J Phys Chem A 116(4):1137CrossRefPubMedGoogle Scholar
  111. 111.
    Phillips H, Geva E, Dunietz BD (2012) J Chem Theory Comput 8(8):2661CrossRefPubMedGoogle Scholar
  112. 112.
    Refaely-Abramson S, Baer R, Kronik L (2011) Phys Rev B 84(7):075144CrossRefGoogle Scholar
  113. 113.
    Sun H, Autschbach J (2014) J Chem Theory Comput 10(3):1035CrossRefPubMedGoogle Scholar
  114. 114.
    Becke AD (2016) The J Chem Phys 145(19):194107CrossRefPubMedGoogle Scholar
  115. 115.
    Baerends EJ, Gritsenko OV, van Meer R (2013) Phys Chem Chem Phys 15(39):16408CrossRefPubMedGoogle Scholar
  116. 116.
    van Meer R, Gritsenko OV, Baerends EJ (2014) J Chem Theory Comput 10(10):4432CrossRefPubMedGoogle Scholar
  117. 117.
    Zhurko G, Zhurko D (2012) Chemcraft program Revision 1.6 http://www.chemcraftcom/. Grigoriy A Zhurko, United States

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de QuímicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, ChihuahuaChihMexico

Personalised recommendations