Advertisement

Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations

Original Paper
  • 44 Downloads
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Abstract

Conjugated organic polymers represent an important class of materials for varied technological applications including in active layers of chemical sensors. In this context, polyaniline (PANI) derivatives are promising candidates, mainly due to their high chemical stability, good processability, versatility of synthesis, polymerization, and doping, as well as relative low cost. In this study, electronic structure calculations were carried out for varied N-substituted PANI derivatives in order to investigate the potential sensory properties of these materials. The opto-electronic properties of nine distinct compounds were evaluated and discussed in terms of the employed substituents. Preliminary reactivity studies were performed in order to identify adsorption centers on the oligomer structures via condensed-to-atoms Fukui indexes (CAFI). Finally, adsorption studies were carried out for selected derivatives considering five distinct gaseous analytes. The influence of the analytes on the oligomer properties were investigated via the evaluation of average binding energies and changes on the structural features, optical absorption spectra, frontier orbitals distribution, and total density of states in relation to the isolated oligomers. The obtained results indicate the derivatives PANI-NO2 and PANI-C6H5 as promising materials for the development of improved chemical sensors.

Keywords

Chemical sensors N-substituted polyaniline derivatives Electronic structure calculations Reactivity indexes Adsorption study 

Notes

Acknowledgements

The authors thank the Brazilian agencies FAPESP (Proc. 2016/05954-0) and CNPq (Proc. 448310/2014-7) for the financial support. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP).

Supplementary material

894_2018_3660_MOESM1_ESM.pdf (16.1 mb)
(PDF 16.0 MB)

References

  1. 1.
    Baraton MI, Organization NAT (eds) (2009) Sensors for environment, health and security: advanced materials and technologies. NATO science for peace and security series. Series C, Environmental security. Springer, DordrechtGoogle Scholar
  2. 2.
    Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) Sensors 12(12):9635.  https://doi.org/10.3390/s120709635 CrossRefGoogle Scholar
  3. 3.
    Adhikari B, Majumdar S (2004) Prog Polym Sci 29(7):699.  https://doi.org/10.1016/j.progpolymsci.2004.03.002 CrossRefGoogle Scholar
  4. 4.
    Jin Z, Su Y, Duan Y (2001) Sensors Actuators B Chem 72(1):75.  https://doi.org/10.1016/S0925-4005(00)00636-5 CrossRefGoogle Scholar
  5. 5.
    Haynes A, Gouma PI (2009). In: Baraton M.I. (ed) Sensors for Envi- ronment, Health and Security. Springer, Netherlands, pp 451–459Google Scholar
  6. 6.
    Crowley K, Smyth MR, Killard AJ, Morrin A (2012) Chem Pap 67(8):771.  https://doi.org/10.2478/s11696-012-0301-9 Google Scholar
  7. 7.
    Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Sensors Actuators B Chem 178:485.  https://doi.org/10.1016/j.snb.2013.01.014 CrossRefGoogle Scholar
  8. 8.
    Sengupta PP, Barik S, Adhikari B (2006) Mater Manuf Process 21 (3):263.  https://doi.org/10.1080/10426910500464602 CrossRefGoogle Scholar
  9. 9.
    Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Sensors Actuators B Chem 220:534.  https://doi.org/10.1016/j.snb.2015.05.107 CrossRefGoogle Scholar
  10. 10.
    Crowley K, Morrin A, Shepherd RL, in het Panhuis M, Wallace GG, Smyth MR, Killard AJ (2010) IEEE Sensors J 10(9):1419.  https://doi.org/10.1109/JSEN.2010.2044996 CrossRefGoogle Scholar
  11. 11.
    Pawar SG, Chougule MA, Sen S, Patil VB (2012) J Appl Polym Sci 125(2):1418.  https://doi.org/10.1002/app.35468 CrossRefGoogle Scholar
  12. 12.
    Syed AA, Dinesan MK (1991) Talanta 38(8):815.  https://doi.org/10.1016/0039-9140(91)80261-W CrossRefGoogle Scholar
  13. 13.
    Stejskal J, Sapurina I, Trchová M (2010) Prog Polym Sci 35(12):1420.  https://doi.org/10.1016/j.progpolymsci.2010.07.006 CrossRefGoogle Scholar
  14. 14.
    Tousek J, Tousková J, Chomutová R, Krivka I, Hajná M, Stejskal J (2017) Synth Met 234:161.  https://doi.org/10.1016/j.synthmet.2017.10.015 CrossRefGoogle Scholar
  15. 15.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34 (8):783.  https://doi.org/10.1016/j.progpolymsci.2009.04.003 CrossRefGoogle Scholar
  16. 16.
    Boeva ZA, Sergeyev VG (2014) Polym Sci Ser C 56(1):144.  https://doi.org/10.1134/S1811238214010032 CrossRefGoogle Scholar
  17. 17.
    D’Aprano G, Leclerc M, Zotti G, Schiavon G (1995) Chem Mater 7(1):33.  https://doi.org/10.1021/cm00049a008 CrossRefGoogle Scholar
  18. 18.
    Bavastrello V, Correia Terencio TB, Nicolini C (2011) Polymer 52(1):46.  https://doi.org/10.1016/j.polymer.2010.10.022 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Manohar S, Macdiarmid A, Cromack K, Ginder J, Epstein A (1989) Synth Met 29(1):349.  https://doi.org/10.1016/0379-6779(89)90317-2 CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Chevalier JW, Bergeron JY, Dao LH (1992) Macromolecules 25(13):3325.  https://doi.org/10.1021/ma00039a001 CrossRefGoogle Scholar
  23. 23.
    Lindfors T, Ivaska A (2002) J Electroanal Chem 531(1):43.  https://doi.org/10.1016/S0022-0728(02)01005-7 CrossRefGoogle Scholar
  24. 24.
    Gheybi H, Abbasian M, Moghaddam PN, Entezami AA (2007) J Appl Polym Sci 106(5):3495.  https://doi.org/10.1002/app.27037 CrossRefGoogle Scholar
  25. 25.
    Gheybi H, Bagheri M, Alizadeh Z, Entezami AA (2008) Polym Adv Technol 19(8):967.  https://doi.org/10.1002/pat.1062 CrossRefGoogle Scholar
  26. 26.
    Tarassi M, Zadehnazari A (2016) J Chil Chem Soc 61(3):3108.  https://doi.org/10.4067/S0717-97072016000300020 CrossRefGoogle Scholar
  27. 27.
    Lindfors T, Ivaska A (2002) J Electroanal Chem 535(1-2):65.  https://doi.org/10.1016/S0022-0728(02)01172-5 CrossRefGoogle Scholar
  28. 28.
    Huang X, McVerry BT, Marambio-Jones C, Wong MCY, Hoek EMV, Kaner RB (2015) J Mater Chem A 3(16):8725.  https://doi.org/10.1039/C5TA00900F CrossRefGoogle Scholar
  29. 29.
    Cataldo F, Maltese P (2002) Eur Polym J 38(9):1791.  https://doi.org/10.1016/S0014-3057(02)00070-8 CrossRefGoogle Scholar
  30. 30.
    Carey FA, Sundberg RJ (2007) Advanced organic chemistry: Part A: Structure and mechanisms. Springer Science & Business Media, BerlinGoogle Scholar
  31. 31.
    Stewart JJP (2007) J Mol Model 13(12):1173.  https://doi.org/10.1007/s00894-007-0233-4 CrossRefGoogle Scholar
  32. 32.
    Stewart JJP (1990) J Comput Aided Mol Des 4(1):1.  https://doi.org/10.1007/BF00128336 CrossRefGoogle Scholar
  33. 33.
    Stewart JJP (2016) MOPAC2016: Molecular orbital package. http://openmopac.net
  34. 34.
    de Oliveira ZT, dos Santos M (2000) Chem Phys 260(1-2):95.  https://doi.org/10.1016/S0301-0104(00)00209-3 CrossRefGoogle Scholar
  35. 35.
    Batagin-Neto A, Oliveira EF, Graeff CF, Lavarda FC (2013) Mol Simul 39(4):309.  https://doi.org/10.1080/08927022.2012.724174 CrossRefGoogle Scholar
  36. 36.
    Oliveira EF, Lavarda FC (2017) Mol Simul 43(18):1496.  https://doi.org/10.1080/08927022.2017.1321759 CrossRefGoogle Scholar
  37. 37.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108(19):5708.  https://doi.org/10.1021/ja00279a008 CrossRefGoogle Scholar
  38. 38.
    Mineva. T (2006) Journal of Molecular Structure: THEOCHEM 762(1-3).  https://doi.org/10.1016/j.theochem.2005.08.044
  39. 39.
    Bronze-Uhle ES, Batagin-Neto A, Lavarda FC, Graeff CFO (2011) J Appl Phys 110(7):073510.  https://doi.org/10.1063/1.3644946 CrossRefGoogle Scholar
  40. 40.
    Batagin-Neto A, Bronze-Uhle E, Vismara M, Assis A, Castro F, Geiger T, Lavarda F, Graeff C (2013) Current Phys Chem 3(4):431.  https://doi.org/10.2174/18779468113036660026 CrossRefGoogle Scholar
  41. 41.
    Cesarino I, Simões R.P., Lavarda FC, Batagin-Neto A (2016) Electrochim Acta 192:8.  https://doi.org/10.1016/j.electacta.2016.01.178 CrossRefGoogle Scholar
  42. 42.
    Martins LM, Vieira SF, Baldacim GB, Bregadiolli BA, Caraschi JC, Batagin-Neto A, Silva-Filho LC (2018) Dyes Pigments 148:81.  https://doi.org/10.1016/j.dyepig.2017.08.056 CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09Google Scholar
  44. 44.
    Roy RK, Pal S, Hirao K (1999) J Chem Phys 110(17):8236.  https://doi.org/10.1063/1.478792 CrossRefGoogle Scholar
  45. 45.
    de Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23 (12):1198.  https://doi.org/10.1002/jcc.10067 CrossRefGoogle Scholar
  46. 46.
    Virji S, Kaner RB, Weiller BH (2006) J Phys Chem B 110(44):22266.  https://doi.org/10.1021/jp063166g CrossRefGoogle Scholar
  47. 47.
    Shirsat MD, Bangar MA, Deshusses MA, Myung NV, Mulchandani A (2009) Appl Phys Lett 94 (8):083502.  https://doi.org/10.1063/1.3070237 CrossRefGoogle Scholar
  48. 48.
    Lim JH, Phiboolsirichit N, Mubeen S, Deshusses MA, Mulchandani A, Myung NV (2010) Nanotechnology 21(7):075502.  https://doi.org/10.1088/0957-4484/21/7/075502 CrossRefGoogle Scholar
  49. 49.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33.  https://doi.org/10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  50. 50.
    Gans JD, Shalloway D (2001) J Mol Graph Model 19(6):557.  https://doi.org/10.1016/S1093-3263(01)00090-0 CrossRefGoogle Scholar
  51. 51.
    Vincent MA, Hillier IH (2014) J Chem Inf Model 54(8):2255.  https://doi.org/10.1021/ci5003729 CrossRefGoogle Scholar
  52. 52.
    Daniel CRA, Rodrigues NM, da Costa NB, Freire RO (2015) J Phys Chem C 119(41):23398.  https://doi.org/10.1021/acs.jpcc.5b05599 CrossRefGoogle Scholar
  53. 53.
    Takimiya K, Osaka I, Nakano M (2014) Chem Mater 26(1):587.  https://doi.org/10.1021/cm4021063 CrossRefGoogle Scholar
  54. 54.
    Shokuhi Rad A, Ghasemi Ateni S, Tayebi HA, Valipour P, Pouralijan Foukolaei V (2016) Journal of Sulfur Chemistry, 1–10.  https://doi.org/10.1080/17415993.2016.1170834
  55. 55.
    Yang LY, Liau WB (2009) Mater Chem Phys 115(1):28.  https://doi.org/10.1016/j.matchemphys.2008.10.074 CrossRefGoogle Scholar
  56. 56.
    Liu SS, Bian LJ, Luan F, Sun MT, Liu XX (2012) Synth Met 162(9-10):862.  https://doi.org/10.1016/j.synthmet.2012.03.015 CrossRefGoogle Scholar
  57. 57.
    Timofeeva O, Lubentsov B, Sudakova Y, Chernyshov D, Khidekel’ M. (1991) Synth Met 40 (1):111.  https://doi.org/10.1016/0379-6779(91)91493-T CrossRefGoogle Scholar
  58. 58.
    Lubentsov B, Timofeeva O, Khidekel’ M. (1991) Synth Met 45(2):235.  https://doi.org/10.1016/0379-6779(91)91808-N CrossRefGoogle Scholar
  59. 59.
    Ullah H, Shah AHA, Bilal S, Ayub K (2013) J Phys Chem C 117 (45):23701.  https://doi.org/10.1021/jp407132c CrossRefGoogle Scholar
  60. 60.
    Mekki A, Joshi N, Singh A, Salmi Z, Jha P, Decorse P, Lau-Truong S, Mahmoud R, Chehimi MM, Aswal DK, Gupta SK (2014) Org Electron 15(1):71.  https://doi.org/10.1016/j.orgel.2013.10.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.São Paulo State University (UNESP), Campus of ItapevaItapevaBrazil

Personalised recommendations