Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations

  • Larissa O. Mandú
  • Augusto Batagin-Neto
Original Paper
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)


Conjugated organic polymers represent an important class of materials for varied technological applications including in active layers of chemical sensors. In this context, polyaniline (PANI) derivatives are promising candidates, mainly due to their high chemical stability, good processability, versatility of synthesis, polymerization, and doping, as well as relative low cost. In this study, electronic structure calculations were carried out for varied N-substituted PANI derivatives in order to investigate the potential sensory properties of these materials. The opto-electronic properties of nine distinct compounds were evaluated and discussed in terms of the employed substituents. Preliminary reactivity studies were performed in order to identify adsorption centers on the oligomer structures via condensed-to-atoms Fukui indexes (CAFI). Finally, adsorption studies were carried out for selected derivatives considering five distinct gaseous analytes. The influence of the analytes on the oligomer properties were investigated via the evaluation of average binding energies and changes on the structural features, optical absorption spectra, frontier orbitals distribution, and total density of states in relation to the isolated oligomers. The obtained results indicate the derivatives PANI-NO2 and PANI-C6H5 as promising materials for the development of improved chemical sensors.


Chemical sensors N-substituted polyaniline derivatives Electronic structure calculations Reactivity indexes Adsorption study 



The authors thank the Brazilian agencies FAPESP (Proc. 2016/05954-0) and CNPq (Proc. 448310/2014-7) for the financial support. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP).

Supplementary material

894_2018_3660_MOESM1_ESM.pdf (16.1 mb)
(PDF 16.0 MB)


  1. 1.
    Baraton MI, Organization NAT (eds) (2009) Sensors for environment, health and security: advanced materials and technologies. NATO science for peace and security series. Series C, Environmental security. Springer, DordrechtGoogle Scholar
  2. 2.
    Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) Sensors 12(12):9635. CrossRefPubMedGoogle Scholar
  3. 3.
    Adhikari B, Majumdar S (2004) Prog Polym Sci 29(7):699. CrossRefGoogle Scholar
  4. 4.
    Jin Z, Su Y, Duan Y (2001) Sensors Actuators B Chem 72(1):75. CrossRefGoogle Scholar
  5. 5.
    Haynes A, Gouma PI (2009). In: Baraton M.I. (ed) Sensors for Envi- ronment, Health and Security. Springer, Netherlands, pp 451–459Google Scholar
  6. 6.
    Crowley K, Smyth MR, Killard AJ, Morrin A (2012) Chem Pap 67(8):771. Google Scholar
  7. 7.
    Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Sensors Actuators B Chem 178:485. CrossRefGoogle Scholar
  8. 8.
    Sengupta PP, Barik S, Adhikari B (2006) Mater Manuf Process 21 (3):263. CrossRefGoogle Scholar
  9. 9.
    Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Sensors Actuators B Chem 220:534. CrossRefGoogle Scholar
  10. 10.
    Crowley K, Morrin A, Shepherd RL, in het Panhuis M, Wallace GG, Smyth MR, Killard AJ (2010) IEEE Sensors J 10(9):1419. CrossRefGoogle Scholar
  11. 11.
    Pawar SG, Chougule MA, Sen S, Patil VB (2012) J Appl Polym Sci 125(2):1418. CrossRefGoogle Scholar
  12. 12.
    Syed AA, Dinesan MK (1991) Talanta 38(8):815. CrossRefPubMedGoogle Scholar
  13. 13.
    Stejskal J, Sapurina I, Trchová M (2010) Prog Polym Sci 35(12):1420. CrossRefGoogle Scholar
  14. 14.
    Tousek J, Tousková J, Chomutová R, Krivka I, Hajná M, Stejskal J (2017) Synth Met 234:161. CrossRefGoogle Scholar
  15. 15.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34 (8):783. CrossRefGoogle Scholar
  16. 16.
    Boeva ZA, Sergeyev VG (2014) Polym Sci Ser C 56(1):144. CrossRefGoogle Scholar
  17. 17.
    D’Aprano G, Leclerc M, Zotti G, Schiavon G (1995) Chem Mater 7(1):33. CrossRefGoogle Scholar
  18. 18.
    Bavastrello V, Correia Terencio TB, Nicolini C (2011) Polymer 52(1):46. CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Manohar S, Macdiarmid A, Cromack K, Ginder J, Epstein A (1989) Synth Met 29(1):349. CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Chevalier JW, Bergeron JY, Dao LH (1992) Macromolecules 25(13):3325. CrossRefGoogle Scholar
  23. 23.
    Lindfors T, Ivaska A (2002) J Electroanal Chem 531(1):43. CrossRefGoogle Scholar
  24. 24.
    Gheybi H, Abbasian M, Moghaddam PN, Entezami AA (2007) J Appl Polym Sci 106(5):3495. CrossRefGoogle Scholar
  25. 25.
    Gheybi H, Bagheri M, Alizadeh Z, Entezami AA (2008) Polym Adv Technol 19(8):967. CrossRefGoogle Scholar
  26. 26.
    Tarassi M, Zadehnazari A (2016) J Chil Chem Soc 61(3):3108. CrossRefGoogle Scholar
  27. 27.
    Lindfors T, Ivaska A (2002) J Electroanal Chem 535(1-2):65. CrossRefGoogle Scholar
  28. 28.
    Huang X, McVerry BT, Marambio-Jones C, Wong MCY, Hoek EMV, Kaner RB (2015) J Mater Chem A 3(16):8725. CrossRefGoogle Scholar
  29. 29.
    Cataldo F, Maltese P (2002) Eur Polym J 38(9):1791. CrossRefGoogle Scholar
  30. 30.
    Carey FA, Sundberg RJ (2007) Advanced organic chemistry: Part A: Structure and mechanisms. Springer Science & Business Media, BerlinGoogle Scholar
  31. 31.
  32. 32.
    Stewart JJP (1990) J Comput Aided Mol Des 4(1):1. CrossRefPubMedGoogle Scholar
  33. 33.
    Stewart JJP (2016) MOPAC2016: Molecular orbital package.
  34. 34.
    de Oliveira ZT, dos Santos M (2000) Chem Phys 260(1-2):95. CrossRefGoogle Scholar
  35. 35.
    Batagin-Neto A, Oliveira EF, Graeff CF, Lavarda FC (2013) Mol Simul 39(4):309. CrossRefGoogle Scholar
  36. 36.
    Oliveira EF, Lavarda FC (2017) Mol Simul 43(18):1496. CrossRefGoogle Scholar
  37. 37.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108(19):5708. CrossRefPubMedGoogle Scholar
  38. 38.
    Mineva. T (2006) Journal of Molecular Structure: THEOCHEM 762(1-3).
  39. 39.
    Bronze-Uhle ES, Batagin-Neto A, Lavarda FC, Graeff CFO (2011) J Appl Phys 110(7):073510. CrossRefGoogle Scholar
  40. 40.
    Batagin-Neto A, Bronze-Uhle E, Vismara M, Assis A, Castro F, Geiger T, Lavarda F, Graeff C (2013) Current Phys Chem 3(4):431. CrossRefGoogle Scholar
  41. 41.
    Cesarino I, Simões R.P., Lavarda FC, Batagin-Neto A (2016) Electrochim Acta 192:8. CrossRefGoogle Scholar
  42. 42.
    Martins LM, Vieira SF, Baldacim GB, Bregadiolli BA, Caraschi JC, Batagin-Neto A, Silva-Filho LC (2018) Dyes Pigments 148:81. CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09Google Scholar
  44. 44.
    Roy RK, Pal S, Hirao K (1999) J Chem Phys 110(17):8236. CrossRefGoogle Scholar
  45. 45.
    de Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23 (12):1198. CrossRefPubMedGoogle Scholar
  46. 46.
    Virji S, Kaner RB, Weiller BH (2006) J Phys Chem B 110(44):22266. CrossRefPubMedGoogle Scholar
  47. 47.
    Shirsat MD, Bangar MA, Deshusses MA, Myung NV, Mulchandani A (2009) Appl Phys Lett 94 (8):083502. CrossRefGoogle Scholar
  48. 48.
    Lim JH, Phiboolsirichit N, Mubeen S, Deshusses MA, Mulchandani A, Myung NV (2010) Nanotechnology 21(7):075502. CrossRefGoogle Scholar
  49. 49.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33. CrossRefPubMedGoogle Scholar
  50. 50.
    Gans JD, Shalloway D (2001) J Mol Graph Model 19(6):557. CrossRefPubMedGoogle Scholar
  51. 51.
    Vincent MA, Hillier IH (2014) J Chem Inf Model 54(8):2255. CrossRefPubMedGoogle Scholar
  52. 52.
    Daniel CRA, Rodrigues NM, da Costa NB, Freire RO (2015) J Phys Chem C 119(41):23398. CrossRefGoogle Scholar
  53. 53.
    Takimiya K, Osaka I, Nakano M (2014) Chem Mater 26(1):587. CrossRefGoogle Scholar
  54. 54.
    Shokuhi Rad A, Ghasemi Ateni S, Tayebi HA, Valipour P, Pouralijan Foukolaei V (2016) Journal of Sulfur Chemistry, 1–10.
  55. 55.
    Yang LY, Liau WB (2009) Mater Chem Phys 115(1):28. CrossRefGoogle Scholar
  56. 56.
    Liu SS, Bian LJ, Luan F, Sun MT, Liu XX (2012) Synth Met 162(9-10):862. CrossRefGoogle Scholar
  57. 57.
    Timofeeva O, Lubentsov B, Sudakova Y, Chernyshov D, Khidekel’ M. (1991) Synth Met 40 (1):111. CrossRefGoogle Scholar
  58. 58.
    Lubentsov B, Timofeeva O, Khidekel’ M. (1991) Synth Met 45(2):235. CrossRefGoogle Scholar
  59. 59.
    Ullah H, Shah AHA, Bilal S, Ayub K (2013) J Phys Chem C 117 (45):23701. CrossRefGoogle Scholar
  60. 60.
    Mekki A, Joshi N, Singh A, Salmi Z, Jha P, Decorse P, Lau-Truong S, Mahmoud R, Chehimi MM, Aswal DK, Gupta SK (2014) Org Electron 15(1):71. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.São Paulo State University (UNESP), Campus of ItapevaItapevaBrazil

Personalised recommendations