Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure

  • Sumith Yesudasan
  • Xianqiao Wang
  • Rodney D. Averett
Original Paper
  • 83 Downloads

Abstract

Studies suggest that patients with deep vein thrombosis and diabetes often have hypercoagulable blood plasma, leading to a higher risk of thromboembolism formation through the rupture of blood clots, which may lead to stroke and death. Despite many advances in the field of blood clot formation and thrombosis, the influence of mechanical properties of fibrin in the formation of thromboembolisms in platelet-poor plasma is poorly understood. In this paper, we combine the concepts of reactive molecular dynamics and coarse-grained molecular modeling to predict the complex network formation of fibrin clots and the branching of fibrin monomers. The 340-kDa fibrinogen molecule was converted into a coarse-grained molecule with nine beads, and using our customized reactive potentials, we simulated the formation and polymerization process of a fibrin clot. The results show that higher concentrations of thrombin result in higher branch-point formation in the fibrin clot structure. Our results also highlight many interesting properties, such as the formation of thicker or thinner fibers depending on the thrombin concentration. To the best of our knowledge, this is the first successful molecular polymerization study of fibrin clots to focus on thrombin concentration.

Keywords

Coarse-grained MD Fibrinogen Molecular dynamics Blood clot Force field 

Notes

Acknowledgements

The research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award number K01HL115486. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This study was also supported in part by resources and technical expertise from the Georgia Advanced Computing Resource Center, a partnership between the University of Georgia’s Office of the Vice President for Research and Office of the Vice President for Information Technology.

References

  1. 1.
    Kyrle PA, Eichinger S (2005) Deep vein thrombosis. Lancet 365(9465):1163–1174.  https://doi.org/10.1016/S0140-6736(05)71880-8
  2. 2.
    Kakkar VV, De Lorenzo F (1998) Prevention of venous thromboembolism in general surgery. Baillieres Clin Haematol 11(3):605–619Google Scholar
  3. 3.
    Collins R, Scrimgeour A, Yusuf S, Peto R (1988) Reduction in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin. Overview of results of randomized trials in general, orthopedic, and urologic surgery. N Engl J Med 318(18):1162–1173.  https://doi.org/10.1056/NEJM198805053181805
  4. 4.
    Zhang H, Mao P, Wang C, Chen D, Xu Z, Shi D, Dai J, Yao Y, Jiang Q (2017) Incidence and risk factors of deep vein thrombosis (DVT) after total hip or knee arthroplasty: a retrospective study with routinely applied venography. Blood Coagul Fibrinolysis 28(2):126–133.  https://doi.org/10.1097/MBC.0000000000000556
  5. 5.
    Michetti CP, Franco E, Coleman J, Bradford A, Trickey AW (2015) Deep vein thrombosis screening and risk factors in a high-risk trauma population. J Surg Res 199(2):545–551.  https://doi.org/10.1016/j.jss.2015.04.069
  6. 6.
    Jiang Y, Li J, Liu Y, Li YC, Zhang WG (2015) Risk factors for deep vein thrombosis after orthopedic surgery and the diagnostic value of D-dimer. Ann Vasc Surg 29(4):675–681.  https://doi.org/10.1016/j.avsg.2014.12.022
  7. 7.
    Liu LP, Zheng HG, Wang DZ, Wang YL, Hussain M, Sun HX, Wang AX, Zhao XQ, Dong KH, Wang CX, He W, Ning B, Wang YJ (2014) Risk assessment of deep-vein thrombosis after acute stroke: a prospective study using clinical factors. CNS Neurosci Ther 20(5):403–410.  https://doi.org/10.1111/cns.12227
  8. 8.
    Anderson FA Jr, Spencer FA (2003) Risk factors for venous thromboembolism. Circulation 107(23 Suppl 1):I9–16. doi: https://doi.org/10.1161/01.CIR.0000078469.07362.E6
  9. 9.
    Ma L, Wen Z (2017) Risk factors and prognosis of pulmonary embolism in patients with lung cancer. Medicine 96(16):e6638.  https://doi.org/10.1097/MD.0000000000006638
  10. 10.
    Wang CY, Ignjatovic V, Francis P, Cain T, Babl F, Kowalski R, Cochrane A, Monagle P (2016) Risk factors and clinical features of acute pulmonary embolism in children from the community. Thromb Res 138:86–90.  https://doi.org/10.1016/j.thromres.2015.12.005
  11. 11.
    Li F, Wang X, Huang W, Ren W, Cheng J, Zhang M, Zhao Y (2014) Risk factors associated with the occurrence of silent pulmonary embolism in patients with deep venous thrombosis of the lower limb. Phlebology 29(7):442–446.  https://doi.org/10.1177/0268355513487331
  12. 12.
    Lee AY (2003) Epidemiology and management of venous thromboembolism in patients with cancer. Thromb Res 110(4):167–172Google Scholar
  13. 13.
    Kearon C (2003) Epidemiology of postoperative venous thromboembolism: lessons from an administrative data base. Thromb Haemost 90(3):367–368Google Scholar
  14. 14.
    Dowling NF, Austin H, Dilley A, Whitsett C, Evatt BL, Hooper WC (2003) The epidemiology of venous thromboembolism in Caucasians and African-Americans: the GATE study. J Thromb Haemost 1(1):80–87Google Scholar
  15. 15.
    White RH (2003) The epidemiology of venous thromboembolism. Circulation 107(23 Suppl 1):I4–I8.  https://doi.org/10.1161/01.CIR.0000078468.11849.66
  16. 16.
    Kroegel C, Reissig A (2003) Principle mechanisms underlying venous thromboembolism: epidemiology, risk factors, pathophysiology and pathogenesis. Respiration 70(1):7–30Google Scholar
  17. 17.
    Geerts WH, Pineo GF, Heit JA, Bergqvist D, Lassen MR, Colwell CW, Ray JG (2004) Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126(3 Suppl):338S–400S.  https://doi.org/10.1378/chest.126.3_suppl.338S
  18. 18.
    Iorio A (2004) Prevention of venous thromboembolism after major orthopedic surgery: summing up evidence about old and new antithrombotic agents. J Thromb Haemost 2(7):1055–1057.  https://doi.org/10.1111/j.1538-7836.2004.00753.x
  19. 19.
    Cimminiello C, Planes A, Samama MM (2004) Prevention of venous thromboembolism after orthopedic surgery: the EXPRESS study. J Thromb Haemost 2(11):2036–2040.  https://doi.org/10.1111/j.1538-7836.2004.01006.x
  20. 20.
    Eriksson BI, Dahl OE (2004) Prevention of venous thromboembolism following orthopaedic surgery: clinical potential of direct thrombin inhibitors. Drugs 64(6):577–595Google Scholar
  21. 21.
    Aronow WS (2004) The prevention of venous thromboembolism in older adults: guidelines. J Gerontol A Biol Sci Med Sci 59(1):42–47Google Scholar
  22. 22.
    Mismetti P, Laporte S, Zufferey P, Epinat M, Decousus H, Cucherat M (2004) Prevention of venous thromboembolism in orthopedic surgery with vitamin K antagonists: a meta-analysis. J Thromb Haemost 2(7):1058–1070.  https://doi.org/10.1111/j.1538-7836.2004.00757.x
  23. 23.
    Greer IA (2004) Prevention of venous thromboembolism in pregnancy. Eur J Med Res 9(3):135–145Google Scholar
  24. 24.
    Brambilla S, Ruosi C, La Maida GA, Caserta S (2004) Prevention of venous thromboembolism in spinal surgery. Eur Spine J 13(1):1–8.  https://doi.org/10.1007/s00586-003-0538-7
  25. 25.
    Agnelli G (2004) Prevention of venous thromboembolism in surgical patients. Circulation 110(24 Suppl 1):IV4–I12.  https://doi.org/10.1161/01.CIR.0000150639.98514.6c
  26. 26.
    Davison SP, Venturi ML, Attinger CE, Baker SB, Spear SL (2004) Prevention of venous thromboembolism in the plastic surgery patient. Plast Reconstr Surg 114(3):43E–51EGoogle Scholar
  27. 27.
    Minnema MC, Breitkreutz I, Auwerda JJ, van der Holt B, Cremer FW, van Marion AM, Westveer PH, Sonneveld P, Goldschmidt H, Lokhorst HM (2004) Prevention of venous thromboembolism with low molecular-weight heparin in patients with multiple myeloma treated with thalidomide and chemotherapy. Leukemia 18(12):2044–2046.  https://doi.org/10.1038/sj.leu.2403533
  28. 28.
    Chueh JY, Wakhloo AK, Hendricks GH, Silva CF, Weaver JP, Gounis MJ (2011) Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. AJNR Am J Neuroradiol 32(7):1237–1244.  https://doi.org/10.3174/ajnr.A2485
  29. 29.
    Moftakhar P, English JD, Cooke DL, Kim WT, Stout C, Smith WS, Dowd CF, Higashida RT, Halbach VV, Hetts SW (2013) Density of thrombus on admission CT predicts revascularization efficacy in large vessel occlusion acute ischemic stroke. Stroke 44(1):243–245.  https://doi.org/10.1161/STROKEAHA.112.674127
  30. 30.
    Gounis MJ, Nogueira RG, Mehra M, Chueh J, Wakhloo AK (2013) A thromboembolic model for the efficacy and safety evaluation of combined mechanical and pharmacologic revascularization strategies. J Neurointerv Surg 5(Suppl 1):i85–i89.  https://doi.org/10.1136/neurintsurg-2012-010435
  31. 31.
    Luo ZH, Chung A, Choi G, Lin YH, Uchida BT, Pavcnik D, Loriaux MM, Nesbit GM, Keller FS, Rosch J (2012) Creation of fibrinogen-enhanced experimental blood clots to evaluate mechanical thrombectomy devices for treatment of acute stroke: an in vitro study. J Vasc Interv Radiol 23(8):1077–1083.  https://doi.org/10.1016/j.jvir.2012.04.031
  32. 32.
    Chueh JY, Kuhn AL, Puri AS, Wilson SD, Wakhloo AK, Gounis MJ (2013) Reduction in distal emboli with proximal flow control during mechanical thrombectomy: a quantitative in vitro study. Stroke 44(5):1396–1401.  https://doi.org/10.1161/STROKEAHA.111.670463
  33. 33.
    Yesudasan S, Wang X, Averett RD (2017) Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior. J Biomol Struct Dyn 1–13.  https://doi.org/10.1080/07391102.2017.1323674
  34. 34.
    Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF (2009) Crystal structure of human fibrinogen. Biochemistry 48(18):3877–3886.  https://doi.org/10.1021/bi802205g
  35. 35.
    Hall CE, Slayter HS (1959) The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 5(1):11–16Google Scholar
  36. 36.
    Rose T, Di Cera E (2002) Three-dimensional modeling of thrombin–fibrinogen interaction. J Biol Chem 277(21):18875–18880.  https://doi.org/10.1074/jbc.M110977200
  37. 37.
    Boryczko K, Dzwinel W, Yuen DA (2004) Modeling fibrin aggregation in blood flow with discrete-particles. Comput Methods Prog Biomed 75(3):181–194.  https://doi.org/10.1016/j.cmpb.2004.02.001
  38. 38.
    Yamaguchi T, Ishikawa T, Imai Y, Matsuki N, Xenos M, Deng Y, Bluestein D (2010) Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Sixth International Bio-fluid Mechanics Symposium and Workshop March 28–30, 2008 Pasadena, California. Ann Biomed Eng 38(3):1225–1235Google Scholar
  39. 39.
    Averett RD, Menn B, Lee EH, Helms CC, Barker T, Guthold M (2012) A modular fibrinogen model that captures the stress–strain behavior of fibrin fibers. Biophys J 103(7):1537–1544.  https://doi.org/10.1016/j.bpj.2012.08.038
  40. 40.
    Wang WW, King MR (2012) Multiscale modeling of platelet adhesion and thrombus growth. Ann Biomed Eng 40(11):2345–2354.  https://doi.org/10.1007/s10439-012-0558-8
  41. 41.
    Moiseyev G, Bar-Yoseph PZ (2013) Computational modeling of thrombosis as a tool in the design and optimization of vascular implants. J Biomech 46(2):248–252.  https://doi.org/10.1016/j.jbiomech.2012.11.002
  42. 42.
    Bajpai AK (2008) Fibrinogen adsorption onto macroporous polymeric surfaces: correlation with biocompatibility aspects. J Mater Sci Mater Med 19(1):343–357.  https://doi.org/10.1007/s10856-006-0024-y
  43. 43.
    Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500(1–3):28–60.  https://doi.org/10.1016/S0039-6028(01)01587-4
  44. 44.
    Yesudasan S, Averett RD (2018) Recent advances in computational modeling of thrombosis. arXiv 180102048Google Scholar
  45. 45.
    Reith D, Putz M, Muller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24(13):1624–1636.  https://doi.org/10.1002/jcc.10307
  46. 46.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38Google Scholar
  47. 47.
    Martinetz T, Schulten K (1994) Topology representing networks. Neural Netw 7(3):507–522.  https://doi.org/10.1016/0893-6080(94)90109-0
  48. 48.
    Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J (1989) The refined 1.9 Å crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J 8(11):3467–3475Google Scholar
  49. 49.
    Fox BA, Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1999) Identification of the calcium binding site and a novel ytterbium site in blood coagulation factor XIII by X-ray crystallography. J Biol Chem 274(8):4917–4923Google Scholar
  50. 50.
    Arkhipov A, Freddolino PL, Schulten K (2006) Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14(12):1767–1777.  https://doi.org/10.1016/j.str.2006.10.003
  51. 51.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802.  https://doi.org/10.1002/jcc.20289
  52. 52.
    Hadley KR, McCabe C (2012) Coarse-grained molecular models of water: a review. Mol Simul 38(8–9):671–681.  https://doi.org/10.1080/08927022.2012.671942
  53. 53.
    Beutler TC, Mark AE, Vanschaik RC, Gerber PR, Vangunsteren WF (1994) Avoiding singularities and numerical instabilities in free-energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539.  https://doi.org/10.1016/0009-2614(94)00397-1
  54. 54.
    Stoddard SD, Ford J (1973) Numerical experiments on the stochastic behavior of a Lennard-Jones gas system. Phys. Rev A 8(3):1504–1513Google Scholar
  55. 55.
    Wang JH (1965) Self-diffusion coefficients of water. J Phys Chem 69(12):4412.  https://doi.org/10.1021/J100782a510
  56. 56.
    Baranowska HM, Olszewski KJ (1996) The hydration of proteins in solutions by self-diffusion coefficients: NMR study. Biochim Biophys Acta Gen Subj 1289(3):312–314.  https://doi.org/10.1016/0304-4165(95)00141-7
  57. 57.
    Tanaka K (1975) Measurements of self-diffusion coefficients of water in pure water and in aqueous-electrolyte solutions. J Chem Soc Faraday Trans 1 71(5):1127–1131.  https://doi.org/10.1039/F19757101127
  58. 58.
    Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45.deg. J Phys Chem 77(5):685–688Google Scholar
  59. 59.
    Wang J (1951) Self-diffusion and structure of liquid water. I. Measurement of self-diffusion of liquid water with deuterium as tracer. J Am Chem Soc 73(2):510–513Google Scholar
  60. 60.
    Tofts P, Lloyd D, Clark C, Barker G, Parker G, McConville P, Baldock C, Pope J (2000) Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med 43(3):368–374Google Scholar
  61. 61.
    Murday J, Cotts R (1970) Self-diffusion in liquids: H2O, D2O, and Na. J Chem Phys 53(12):4724–4725Google Scholar
  62. 62.
    Potoff JJ, Panagiotopoulos AZ (1998) Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture. J Chem Phys 109(24):10914–10920.  https://doi.org/10.1063/1.477787
  63. 63.
    Trokhymchuk A, Alejandre J (1999) Computer simulations of liquid/vapor interface in Lennard-Jones fluids: some questions and answers. J Chem Phys 111(18):8510–8523.  https://doi.org/10.1063/1.480192
  64. 64.
    Ogston CM, Ogston D (1966) Plasma fibrinogen and plasminogen levels in health and in ischaemic heart disease. J Clin Pathol 19(4):352–356Google Scholar
  65. 65.
    MathWorks (2012) MATLAB and statistics toolbox release. MathWorks, NatickGoogle Scholar
  66. 66.
    Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98.  https://doi.org/10.1103/Physrev.159.98
  67. 67.
    Plimpton S, Crozier P, Thompson A (2007) LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories, Albuquerque, p 18Google Scholar
  68. 68.
    Pechik I, Madrazo J, Mosesson MW, Hernandez I, Gilliland GL, Medved L (2004) Crystal structure of the complex between thrombin and the central “E” region of fibrin. Proc Natl Acad Sci U S A 101(9):2718–2723.  https://doi.org/10.1073/pnas.0303440101
  69. 69.
    Liu CY (1981) Mechanism of thrombin binding by fibrin. Ann N Y Acad Sci 370:545–550Google Scholar
  70. 70.
    Liu CY, Nossel HL, Kaplan KL (1979) The binding of thrombin by fibrin. J Biol Chem 254(20):10421–10425Google Scholar
  71. 71.
    Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10(4):1502–1514.  https://doi.org/10.1016/j.actbio.2013.09.008
  72. 72.
    Greenberg CS, Dobson JV, Miraglia CC (1985) Regulation of plasma factor XIII binding to fibrin in vitro. Blood 66(5):1028–1034Google Scholar
  73. 73.
    Fukue H, Anderson K, McPhedran P, Clyne L, McDonagh J (1992) A unique factor XIII inhibitor to a fibrin-binding site on factor XIIIA. Blood 79(1):65–74Google Scholar
  74. 74.
    Doolittle RF (1984) Fibrinogen and fibrin. Annu Rev Biochem 53:195–229Google Scholar
  75. 75.
    Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell Simul Mater Sci Eng 18(1).  https://doi.org/10.1088/0965-0393/18/1/015012
  76. 76.
    Kim OV, Litvinov RI, Alber MS, Weisel JW (2017) Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat Commun 8(1):1274.  https://doi.org/10.1038/s41467-017-00885-x
  77. 77.
    Litvinov RI, Gorkun OV, Owen SF, Shuman H, Weisel JW (2005) Polymerization of fibrin: specificity, strength, and stability of knob–hole interactions studied at the single-molecule level. Blood 106(9):2944–2951.  https://doi.org/10.1182/blood-2005-05-2039
  78. 78.
    Ryan EA, Mockros LF, Weisel JW, Lorand L (1999) Structural origins of fibrin clot rheology. Biophys J 77(5):2813–2826.  https://doi.org/10.1016/S0006-3495(99)77113-4
  79. 79.
    Fogelson AL, Keener JP (2010) Toward an understanding of fibrin branching structure. Phys Rev E 81(5 Pt 1):051922.  https://doi.org/10.1103/PhysRevE.81.051922
  80. 80.
    Weisel JW (2004) The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 112(2–3):267–276.  https://doi.org/10.1016/j.bpc.2004.07.029
  81. 81.
    Norton DG, Fan NK, Goudie MJ, Handa H, Platt MO, Averett RD (2017) Computational imaging analysis of glycated fibrin gels reveals aggregated and anisotropic structures. J Biomed Mater Res A 105(8):2191–2198Google Scholar
  82. 82.
    Allen MP, Tildesley, DJ (1989) Computer simulation of liquids. Clarendon Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sumith Yesudasan
    • 1
  • Xianqiao Wang
    • 2
  • Rodney D. Averett
    • 1
  1. 1.School of Chemical, Materials and Biomedical EngineeringUniversity of GeorgiaAthensUSA
  2. 2.School of Environmental, Civil, Agricultural and Mechanical EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations