In silico study of carvone derivatives as potential neuraminidase inhibitors

  • Noorakmar Jusoh
  • Hasanuddin Zainal
  • Azzmer Azzar Abdul Hamid
  • Noraslinda M. Bunnori
  • Khairul Bariyyah Abd Halim
  • Shafida Abd Hamid
Original Paper
  • 85 Downloads

Abstract

Recent outbreaks of highly pathogenic influenza strains have highlighted the need to develop new anti-influenza drugs. Here, we report an in silico study of carvone derivatives to analyze their binding modes with neuraminidase (NA) active sites. Two proposed carvone analogues, CV(A) and CV(B), with 36 designed ligands were predicted to inhibit NA (PDB ID: 3TI6) using molecular docking. The design is based on structural resemblance with the commercial inhibitor, oseltamivir (OTV), ligand polarity, and amino acid residues in the NA active sites. Docking simulations revealed that ligand A18 has the lowest energy binding (∆Gbind) value of −8.30 kcal mol-1, comparable to OTV with ∆Gbind of −8.72 kcal mol-1. A18 formed seven hydrogen bonds (H-bonds) at residues Arg292, Arg371, Asp151, Trp178, Glu227, and Tyr406, while eight H-bonds were formed by OTV with amino acids Arg118, Arg292, Arg371, Glu119, Asp151, and Arg152. Molecular dynamics (MD) simulation was conducted to compare the stability between ligand A18 and OTV with NA. Our simulation study showed that the A18-NA complex is as stable as the OTV-NA complex during the MD simulation of 50 ns through the analysis of RMSD, RMSF, total energy, hydrogen bonding, and MM/PBSA free energy calculations.

Keywords

Influenza neuraminidase Molecular docking Carvone MM/PBSA 

Notes

Acknowledgments

SAH thanks Malaysia Ministry of Higher Education (MOHE) for Fundamental Research Grant Scheme (FRGS14-098-0339) and myBrain15 scholarship for NJ.

Supplementary material

894_2018_3619_MOESM1_ESM.docx (429 kb)
ESM 1 (DOCX 429 kb)

References

  1. 1.
    Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antivir Res 98(2):174–185CrossRefGoogle Scholar
  2. 2.
    Wang GT, Chen Y, Wang S, Gentles R, Sowin T, Kati W, Muchmore S, Giranda V, Stewart K, Sham H, Kempf D, Laver WG (2001) Design , Synthesis , and Structural Analysis of Influenza Neuraminidase Inhibitors Containing Pyrrolidine Cores. Lett Org Chem 167:1192–1201Google Scholar
  3. 3.
    John P, Adabala P, Legresley EB, Bance N, Niikura M, Pinto BM (2013) Exploitation of the catalytic site and 150 cavity for Design of in fl uenza a neuraminidase inhibitors. J Org Chem 78:10867–10877CrossRefGoogle Scholar
  4. 4.
    von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 6:967–974CrossRefGoogle Scholar
  5. 5.
    von Itzstein M, Wu W-Y, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423CrossRefGoogle Scholar
  6. 6.
    Gong J, Xu W, Zhang J (2007) Structure and functions of influenza virus neuraminidase. Curr Med Chem 14(1):113–122CrossRefGoogle Scholar
  7. 7.
    Pranita SSK, Kore P, Mutha MM, Antre RV, Oswal RJ (2012) Computer-aided drug design: an innovative tool for modeling. Open J Med Chem 2(1):139–148Google Scholar
  8. 8.
    D’Souza C, Kanyalkar M, Joshi M, Coutinho E, Srivastava S (2009) Probing molecular level interaction of oseltamivir with H5N1-NA and model membranes by molecular docking, multinuclear NMR and DSC methods. Biochim Biophys Acta Biomembr. 1788(2):484–494CrossRefGoogle Scholar
  9. 9.
    Stoll V, Stewart KD, Maring CJ, Muchmore S, Giranda V, Gui Y, Gu Y, Wang G, Chen Y, Sun M, Zhao C, Kennedy AL, Madigan DL, Xu Y, Saldivar A, Kati W, Laver G, Sowin T, Sham HL, Greer J, Kempf D (2003) Influenza neuraminidase inhibitors: structure-based design of a novel inhibitor series. Biochemistry 42(3):718–727CrossRefGoogle Scholar
  10. 10.
    Ye D, Shin W-J, Li N, Tang W, Feng E, Li J, He P-L, Zuo J-P, Kim H, Nam K-Y, Zhu W, Seong B-L, No KT, Jiang H, Liu H (2012) Synthesis of C-4-modified zanamivir analogs as neuraminidase inhibitors and their anti-AIV activities. Eur J Med Chem 54:764–770CrossRefGoogle Scholar
  11. 11.
    Rudrawar S, Dyason JC, Rameix-Welti MA, Rose FJ, Kerry PS, Russell RJ, van der Werf S, Thomson RJ, Naffakh N, von Itzstein M (2010) Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat Commun 1:113–117 Google Scholar
  12. 12.
    von Itzstein M, Thomson R (2009) Anti-influenza drugs: the development of sialidase inhibitors. Handb Exp Pharmacol 189:111–154Google Scholar
  13. 13.
    Lew W, Chen X, Kim CU (2000) Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor. Curr Med Chem 7(6):663–672CrossRefGoogle Scholar
  14. 14.
    Decarvalho C, Dafonseca M (2006) Carvone: why and how should one bother to produce this terpene. Food Chem 95(3):413–422CrossRefGoogle Scholar
  15. 15.
    López G, Valencia A, Tress ML (2007) Firestar-prediction of functionally important residues using structural templates and alignment reliability. Nucleic Acids Res 35(Suppl2):573–577Google Scholar
  16. 16.
    Hariono M, Abdullah N, Damodaran KV, Kamarulzaman EE (2016) Potential new H1N1 neuraminidase inhibitors from ferulic acid and vanillin: molecular modelling, synthesis and in vitro assay. Nat Publ Gr  https://doi.org/10.1038/srep38692
  17. 17.
    Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions clean up structure. Protein Eng 8(2):127–134Google Scholar
  18. 18.
    Van Gunsteren FW, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, ZürichGoogle Scholar
  19. 19.
    Schüttelkopf AW, Van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(8):1355–1363Google Scholar
  20. 20.
    Asadollahi-Baboli M, Mani-Varnosfaderani A (2013) Molecular docking, molecular dynamics simulation, and QSAR model on potent thiazolidine-4-carboxylic acid inhibitors of influenza neuraminidase. Med Chem Res 22(4):1700–1710CrossRefGoogle Scholar
  21. 21.
    He JY, Li C, Wu G (2014) Discovery of potential drugs for human-infecting H7N9 virus containing R294K mutation. Drug Des Devel Ther 8:2377–2390CrossRefGoogle Scholar
  22. 22.
    Kumari R, Kumar R, Lynn A (2014) G-mmpbsa -a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962CrossRefGoogle Scholar
  23. 23.
    Morris G, Goodsell D (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  24. 24.
    Morris GM, Huey R, Olson AJ (2008) UNIT using AutoDock for ligand-receptor docking. Curr Protocols Bioinform.  https://doi.org/10.1002/0471250953.bi0814s24
  25. 25.
    Kang JW, Hwang HJ, Song KO, Choi WY, Byun KR, Kwon OK, Lee JH, Kim WW, Muchtaridi M, Aliyudin A, Holik HA (2003) Potential activity of some natural products compounds as neuraminidase inhibitors based on molecular docking simulation and in vitro test. J Korean Phys Soc 5(3):65–73Google Scholar
  26. 26.
    Wang T, Wade RC (2001) Comparative binding energy (COMBINE) analysis of influenza neuraminidase-inhibitor complexes. J Med Chem 44:961–971CrossRefGoogle Scholar
  27. 27.
    Liu Z, Zhao J, Li W, Wang X, Xu J, Xie J, Tao K, Shen L, Zhang R (2015) Molecular docking of potential inhibitors for influenza H7N9. Comput Math Methods Med. 2015:1–9Google Scholar
  28. 28.
    Patil R, Das S, Stanley A, Yadav L, Sudhakar A (2010) Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One 5(8):e12029Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Kulliyyah of ScienceInternational Islamic University MalaysiaBandar Indera Mahkota KuantanMalaysia
  2. 2.Department of Biotechnology, Kulliyyah of ScienceInternational Islamic University MalaysiaBandar Indera Mahkota KuantanMalaysia

Personalised recommendations