Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep

Original Paper
  • 107 Downloads

Abstract

The dependence of creep deformation behavior of nickel bicrystal specimens on grain boundary (GB) complexion was investigated by performing a simulated bending creep test using molecular dynamics methods. Strain burst phenomena were observed during the low temperature [500 K, i.e., <0.3 * melting point of nickel (Tm)] bending creep process. Atomic strain and dislocation analyses showed that the time of occurrence of strain burst depends on how easily GB migration happens in bicrystal specimens. Specimens with kite monolayer segregation GB complexion were found to be stable at low temperature (500 K), whereas specimens with split-kite GB complexion were stable at a comparatively higher temperature (900 K). In case of further elevated creep temperatures, e.g., 1100 K and 1300 K, split-kite GB complexion becomes unstable and leads to early failure of the specimen at those temperatures. Additionally, it was observed that split-kite bilayer segregation and normal kite GB complexions exhibit localized increases in elastic modulus during bending creep process, occurring at temperatures of 1100 K and 1300 K, respectively, due to the formation of interpenetrating icosahedral clusters.

Graphical abstract

Representative creep curves during bending creep deformation of various grain boundary complexions at 900 K

Keywords

Grain boundary complexion Creep Molecular dynamics Ni-Zr alloy 

Notes

Acknowledgments

The authors would like to acknowledge the computer center of National Institute of Technology Rourkela for giving access to high-performance computing facility (HPCF) required for performing this molecular dynamics study.

Supplementary material

894_2018_3616_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1163 kb)

References

  1. 1.
    Tang M, Carter WC, Cannon RM (2006) J Mater Sci 41:7691–7695CrossRefGoogle Scholar
  2. 2.
    Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Acta Mater 62:1–48CrossRefGoogle Scholar
  3. 3.
    Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Acta Mater 55:6208–6218CrossRefGoogle Scholar
  4. 4.
    Pan Z, Rupert TJ (2016) Phys Rev B 93(13):134113CrossRefGoogle Scholar
  5. 5.
    Luo J, Cheng H, Asl KM, Kiely CJ, Harmer MP (2011) Science 333:1730–1733CrossRefGoogle Scholar
  6. 6.
    Reddy KM, Guo JJ, Shinoda Y, Fujita T, Hirata A, Singh JP, Chen MW (2012) Nat. Commun 3:1052CrossRefGoogle Scholar
  7. 7.
    Khalajhedayati A, Rupert TJ (2015) JOM 67:2788–2801CrossRefGoogle Scholar
  8. 8.
    Jud E, Huwiler CB, Gauckler LJ (2005) J Am Ceram Soc 88:3013–3019CrossRefGoogle Scholar
  9. 9.
    Dillon SJ, Harmer MP (2008) J Am Ceram Soc 91:2304–2313CrossRefGoogle Scholar
  10. 10.
    Nie J, Chan JM, Qin M, Zhou N, Luo J (2017) Acta Mater 130:329–338CrossRefGoogle Scholar
  11. 11.
    Gupta VK, Yoon DH, Meyer HM, Luo J (2007) Acta Mater 55:3131–3142CrossRefGoogle Scholar
  12. 12.
    Frolov T (2014) Appl Phys Lett 104:211905CrossRefGoogle Scholar
  13. 13.
    Tewari A, Bowen P (2016) Curr Opin Solid State Mater Sci 20:278–285CrossRefGoogle Scholar
  14. 14.
    Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Nat Commun 4:1899CrossRefGoogle Scholar
  15. 15.
    Su X, Garofalini SH (2004) J Mater Res 19:752–758CrossRefGoogle Scholar
  16. 16.
    Zhou N, Hu T, Huang J, Luo J (2016) Scr Mater 124:160–163CrossRefGoogle Scholar
  17. 17.
    Khalajhedayati A, Pan Z, Rupert TJ (2016) Nat Commun:7Google Scholar
  18. 18.
    Straumal BB, Mazilkin AA, Baretzky B (2016) Curr Opin Solid State Mater Sci 20:247–256Google Scholar
  19. 19.
    Reddy KV, Meraj M, Pal S (2017) Comput Mater Sci 136:36–43Google Scholar
  20. 20.
    Plimpton S (1995) J Comput Phy 117(1):1–19Google Scholar
  21. 21.
    Zhang L, Lu C, Tieu K (2014) Sci Rep 4:5919Google Scholar
  22. 22.
    Frolov T, Asta M, Mishin Y (2015) Phys Rev B 92:020103CrossRefGoogle Scholar
  23. 23.
    Miyajima Y, Ueda T, Adachi H, Fujii T, Onaka S, Kato M (2014) In: IOP conference series: Mater Sci Eng 63:012138Google Scholar
  24. 24.
    Wilson SR, Mendelev MI (2015) Philos Mag 95:224–241Google Scholar
  25. 25.
    Evans DJ, Holian BL (1985) J Chem Phys 83:4069–4074Google Scholar
  26. 26.
    Stukowski A (2009) Model Simul Mater Sci Eng 18:015012Google Scholar
  27. 27.
    Faken D, Jónsson H (1994) Comput Mater Sci 2:279–286Google Scholar
  28. 28.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Phys Rev B 58:11085CrossRefGoogle Scholar
  29. 29.
    Stukowski A, Bulatov VV, Arsenlis A (2012) Model Simul Mater Sci Eng 20:085007Google Scholar
  30. 30.
    Shimizu F, Ogata S, Li J (2007) Mater Trans 48:2923–2927Google Scholar
  31. 31.
    Jing GY, Duan H, Sun XM, Zhang ZS, Xu J, Li YD, Yu DP (2006) Phys Rev B 73:235409CrossRefGoogle Scholar
  32. 32.
    Frolov T, Divinski SV, Asta M, Mishin Y (2013) Phys Rev Lett 110:255502Google Scholar
  33. 33.
    Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Phys Rev B 59(5):3393CrossRefGoogle Scholar
  34. 34.
    Mendelev MI, Kramer MJ, Hao SG, Ho KM, Wang CZ (2012) Philos Mag 92(35):4454–4469Google Scholar
  35. 35.
    Sarkar A, Nagesha A, Parameswaran P, Sandhya R, Laha K (2016) Mater Sci Eng, A 660:213–224CrossRefGoogle Scholar
  36. 36.
    Shibkov AA, Gasanov MF, Zheltov MA, Zolotov AE, Ivolgin VI (2016) Int J Plast 86:37–55Google Scholar
  37. 37.
    Hu T, Jiang L, Yang H, Ma K, Topping TD, Yee J, Lavernia EJ (2015) Acta Mater 94:46–58Google Scholar
  38. 38.
    Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Acta Mater 52:3793–3805Google Scholar
  39. 39.
    Wilshire B, Owen DRJ (1982) Recent Advances in Creep and Fracture of Engineering Materials and Structures, Pineridge Press, 91 West Cross Lane, West Cross, Swansea, West Glamorgan U K, pp 353Google Scholar
  40. 40.
    Rupert TJ (2016) Curr Opin Solid State Mater Sci 20:257–267Google Scholar
  41. 41.
    Hatherly M, Malin AS (1984) Scr Metall 18(5) 449–454Google Scholar
  42. 42.
    Zhang Q, Liu Y, Liu Y, Ren Y, Wu Y, Gao Z, Han P (2017) Mater Sci Eng. A 701:196–202Google Scholar
  43. 43.
    Lee M, Kim HK, Lee JC (2010) Met Mater Int 16:877–881Google Scholar
  44. 44.
    Lee M, Lee CM, Lee KR, Ma E, Lee JC (2011) Acta Mater 59:159–170Google Scholar
  45. 45.
    Wakeda M, Shibutani Y (2010) Acta Mater 58:3963–3969Google Scholar
  46. 46.
    Singh V, Rama Rao P, Taplin DMR (1973) J Mater Sci 8:373–381Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations