Advertisement

Insulin adsorption on functionalized silica surfaces: an accelerated molecular dynamics study

  • Marjan A. Nejad
  • Herbert M. Urbassek
Original Paper
  • 208 Downloads

Abstract

We study the influence of surface functionalization of a silica surface on insulin adsorption using accelerated molecular dynamics simulation. Three different functional groups are studied, CH3, OH, and COOH. Due to the partial charges of these groups, the surface polarity of silica is strongly altered. We find that the adsorption energies of insulin change in agreement with the decreasing surface polarity. Conformational changes in the adsorbed protein and the magnitude of the molecular dipole moment in the adsorbed state are consistent with this result. We conclude that protein adsorption on functionalized polar surfaces is governed by the induced changes in surface polarity.

Keywords

Molecular dynamics Protein adsorption Insulin Silica Surface functionalization Electrical dipole 

Notes

Acknowledgements

We appreciate the computational resources provided by the compute cluster ‘Elwetritsch’ of the University of Kaiserslautern.

References

  1. 1.
    Andronescu E, Grumezescu AM (eds) (2017) Nanostructures for drug delivery. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Kotzabasaki M, Galdadas I, Tylianakis E, Klontzas E, Cournia Z, Froudakis GE (2017) Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for gemcitabine delivery. J Mater Chem B 5:3277–3282CrossRefGoogle Scholar
  3. 3.
    Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH (2010) Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J 1:164–209CrossRefGoogle Scholar
  4. 4.
    Kwon S, Singh RK, Perez RA, Neel EAA, Kim H-W, Chrzanowski W (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:2041731413503357CrossRefGoogle Scholar
  5. 5.
    Desai TA, West T, Cohen M, Boiarski T, Rampersaud A (2004) Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 56:1661–1673CrossRefGoogle Scholar
  6. 6.
    Sekigami T, Shimoda S, Nishida K, Matsuo Y, Ichimori S, Ichinose K, Shichiri M, Sakakida M, Araki E (2004) Comparison between closed-loop portal and peripheral venous insulin delivery systems for an artificial endocrine pancreas. J Artif Organs 7:91–100CrossRefGoogle Scholar
  7. 7.
    Geetha S (2014) Artificial drug delivery system for diabetes. Indian J Sci Technol 7:58–61Google Scholar
  8. 8.
    Matteucci E, Giampietro O, Covolan V, Giustarini D, Fanti P, Rossi R (2015) Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des Devel Ther 9:3109–3118CrossRefGoogle Scholar
  9. 9.
    Zahid N, Taylor KMG, Gill H, Maguire F, Shulman R (2008) Adsorption of insulin onto infusion sets used in adult intensive care unit and neonatal care settings. Diabet Res Clin Pract 80:e11–e13CrossRefGoogle Scholar
  10. 10.
    Mollmann SH, Bukrinsky JT, Frokjaer S, Elofsson U (2005) Adsorption of human insulin and AspB28 insulin on a PTFE-like surface. J Colloid Interface Sci 286:28–35CrossRefGoogle Scholar
  11. 11.
    Mollmann SH, Jorgensen L, Bukrinsky JT, Elofsson U, Norde W, Frokjaer S (2006) Interfacial adsorption of insulin conformational changes and reversibility of adsorption. Eur J Pharm Sci 27:194CrossRefGoogle Scholar
  12. 12.
    Pikulski M, Gorski W (2000) Iridium-based electrocatalytic systems for the determination of insulin. Anal Chem 72:2696–2702CrossRefGoogle Scholar
  13. 13.
    Kaur A, Verma N (2012) Electrochemical biosensor for monitoring insulin in normal individuals and diabetic mellitus patients. Euro J Exp Bio 2:389–395Google Scholar
  14. 14.
    Wu Y, Chen C, Liu S (2009) Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem 81: 1600–1607CrossRefGoogle Scholar
  15. 15.
    Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866CrossRefGoogle Scholar
  16. 16.
    Wang H, Agarwal S, Zhao S, Yu J, Lu X, He X (2016a) Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials 97:62–73Google Scholar
  17. 17.
    Wang Y, Li P, Tran TT-D, Zhang J, Kong L (2016) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 6:26CrossRefGoogle Scholar
  18. 18.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41CrossRefGoogle Scholar
  19. 19.
    Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233–244CrossRefGoogle Scholar
  20. 20.
    Poger D, Mark AE (2013) Study of proteins and peptides at interfaces by molecular dynamics simulation techniques. In: Ruso JM, Pineiro A (eds) Proteins in solution and at interfaces: methods and applications in biotechnology and materials science. Wiley, Hoboken, p Ch 14, 291Google Scholar
  21. 21.
    Kubiak-Ossowska K, Mulheran PA (2010) What governs protein adsorption and immobilization at a charged solid surface? Langmuir 26:7690CrossRefGoogle Scholar
  22. 22.
    Kubiak-Ossowska K, Mulheran PA, Nowak W (2014) Fibronectin module FNIII9 adsorption at contrasting solid model surfaces studied by atomistic molecular dynamics. J Phys Chem B 118:9900–9908CrossRefGoogle Scholar
  23. 23.
    Kubiak-Ossowska K, Cwieka M, Kaczynska A, Jachimska B, Mulheran PA (2015) Lysozyme adsorption at a silica surface using simulation and experiment: effects of pH on protein layer structure. Phys Chem Chem Phys 17:24070CrossRefGoogle Scholar
  24. 24.
    Tosaka R, Yamamoto H, Ohdomari I, Watanabe T (2010) Adsorption mechanism of ribosomal protein L2 onto a silica surface: a molecular dynamics simulation study. Langmuir 26:9950–9955CrossRefGoogle Scholar
  25. 25.
    Buijs J, Costa Vera C, Ayala E, Steensma E, Hakansson P, Oscarsson S (1999) Conformational stability of adsorbed insulin studied with mass spectrometry and hydrogen exchange. Anal Chem 71:3219CrossRefGoogle Scholar
  26. 26.
    Jorgensen L, Bennedsen P, Vrϕ nning Hoffmann S, Krogh RL, Pinholt C, Groenning M, Hostrup S, Bukrinsky JT (2011) Adsorption of insulin with varying self-association profiles to a solid teflon surface - influence on protein structure, fibrillation tendency and thermal stability. Eur J Pharm Sci 42:509Google Scholar
  27. 27.
    Ademovic Z, Salber J, Klee D (2015) Interaction of insulin and polymer surface investigated by surface-MALDI-TOF-mass spectrometry. Croat Chem Acta 88:213CrossRefGoogle Scholar
  28. 28.
    Nejad MA, Mücksch C, Urbassek HM (2017) Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations. Chem Phys Lett 670:77–83CrossRefGoogle Scholar
  29. 29.
    Zhou J, Chen S, Jiang S (2003) Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir 19:3472–3478CrossRefGoogle Scholar
  30. 30.
    Peng C, Liu J, Zhao D, Zhou J (2014) Adsorption of hydrophobin on different self-assembled monolayers: the role of the hydrophobic dipole and the electric dipole. Langmuir 30:11401–11411CrossRefGoogle Scholar
  31. 31.
    Petrash S, Liebmann-Vinson A, Foster MD, Lander LM, Brittain WJ, Majkrzak CF (1997) Neutron and X-ray reflectivity studies of human serum albumin adsorption onto functionalized surfaces of self-assembled monolayers. Biotechnol Prog 13:635–639CrossRefGoogle Scholar
  32. 32.
    Ombelli M, Costello LB, Meng QC, Composto RJ, Eckmann DM (2005) Competitive adsorption of plasma proteins on polysaccharide-modified silicon surfaces. Mater Res Soc Symp Proc 845:AA8.6.1Google Scholar
  33. 33.
    Mauri S, Volk M, Byard S, Berchtold H, Arnolds H (2015) Stabilization of insulin by adsorption on a hydrophobic silane self-assembled monolayer. Langmuir 31:8892–8900CrossRefGoogle Scholar
  34. 34.
    Khanniche S, Mathieu D, Pereira F, Hairault L (2017) Atomistic models of hydroxylated, ethoxylated and methylated silica surfaces and nitrogen adsorption isotherms: a molecular dynamics approach. Microporous Mesoporous Mater 250:158–169CrossRefGoogle Scholar
  35. 35.
    Corno M, Delle Piane M, Monti S, Moreno-Couranjou M, Choquet P, Ugliengo P (2015) Computational study of acidic and basic functionalized crystalline silica surfaces as a model for biomaterial interfaces. Langmuir 31:6321–6331CrossRefGoogle Scholar
  36. 36.
    Rigo VA, de Lara LS, Miranda CR (2014) Energetics of formation and hydration of functionalized silica nanoparticles: an atomistic computational study. Appl Surf Sci 292:742–749CrossRefGoogle Scholar
  37. 37.
    de Lara LS, Rigo VA, Miranda CR (2015) The stability and interfacial properties of functionalized silica nanoparticles dispersed in brine studied by molecular dynamics. Eur Phys J B 88:261CrossRefGoogle Scholar
  38. 38.
    de Lara LS, Rigo VA, Miranda CR (2016) Functionalized silica nanoparticles within multicomponent oil/brine interfaces: a study in molecular dynamics. J Phys Chem C 120:6787–6795CrossRefGoogle Scholar
  39. 39.
    Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919CrossRefGoogle Scholar
  40. 40.
    Mücksch C, Urbassek HM (2013) Enhancing protein adsorption simulations by using accelerated molecular dynamics. PLoS One 8:e64883CrossRefGoogle Scholar
  41. 41.
    Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110:21497CrossRefGoogle Scholar
  42. 42.
    Patwardhan SV, Emami FS, Berry RJ, Jones SE, Naik RR, Deschaume O, Heinz H, Perry CC (2012) Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J Am Chem Soc 134:6244–6256CrossRefGoogle Scholar
  43. 43.
    Mulheran PA, Connell DJ, Kubiak-Ossowska K (2016) Steering protein adsorption at charged surfaces: electric fields and ionic screening. RSC Adv 6:73709–73716CrossRefGoogle Scholar
  44. 44.
    Kubiak-Ossowska K, Tokarczyk K, Jachimska B, Mulheran PA (2017) Bovine serum albumin adsorption at a silica surface explored by simulation and experiment. J Phys Chem B 121:3975–3986CrossRefGoogle Scholar
  45. 45.
    Rozanska X, Delbecq F, Sautet P (2010) Reconstruction and stability of β-cristobalite 001, 101, and 111 surfaces during dehydroxylation. Phys Chem Chem Phys 12:14930–14940CrossRefGoogle Scholar
  46. 46.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Comput Chem 31:671Google Scholar
  47. 47.
    MacKerrell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  48. 48.
    Ionescu C-M, Sehnal D, Falginella FL, Pant P, Pravda L, Bouchal T, Svobodová Vařeková R, Geidl S, Koča J (2015) AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminf 7:50CrossRefGoogle Scholar
  49. 49.
    Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DMC, Hubbard RE, Isaacs NW, Reynolds CD et al (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philos Trans R Soc london, Ser B 319:369CrossRefGoogle Scholar
  50. 50.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926CrossRefGoogle Scholar
  51. 51.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781CrossRefGoogle Scholar
  52. 52.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327CrossRefGoogle Scholar
  53. 53.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  54. 54.
    Humphrey W, Dalke A, Schulten K (1996) VMD – Visual Molecular Dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  55. 55.
    Stone J (1998) An Efficient Library for Parallel Ray Tracing and Animation, Masters thesis, Computer Science Department, University of Missouri-RollaGoogle Scholar
  56. 56.
    Norde W, Giacomelli CE (1999) Conformational changes in proteins at interfaces: from solution to the interface, and back. Macromol Symp 145:125CrossRefGoogle Scholar
  57. 57.
    Anand G, Sharma S, Dutta AK, Kumar SK, Belfort G (2010) Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 26:10803–10811CrossRefGoogle Scholar
  58. 58.
    Hartvig RA, van de Weert M, Ostergaard J, Jorgensen L, Jensen H (2011) Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir 27:2634–2643CrossRefGoogle Scholar
  59. 59.
    Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins: Struct Funct Genet 23:566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich Physik und Forschungszentrum OPTIMASUniversität Kaiserslautern, Erwin-Schrödinger-StraßeKaiserslauternGermany

Personalised recommendations