Advertisement

QSPR modeling of optical rotation of amino acids using specific quantum chemical descriptors

  • Karina Kapusta
  • Natalia Sizochenko
  • Sedat Karabulut
  • Sergiy Okovytyy
  • Eugene Voronkov
  • Jerzy Leszczynski
Original Paper
  • 134 Downloads
Part of the following topical collections:
  1. P. Politzer 80th Birthday Festschrift

Abstract

Many chemical phenomena occur in solution. Different solvents can change the optical activity of chiral molecules. The optical rotation angles of solutes of 75 amino acids in dimethylformamide, water and methanol were analyzed using the quantitative structure–activity relationships approach. For an accurate description of chirality, we used specific quantum chemical descriptors, which reflect the properties of a chiral center, and continuous symmetry measures. The set of specific quantum chemical descriptors for atoms located near the chiral center, such as Mulliken charges, the sum of Mulliken charges on an atom (with the hydrogen charges summed up with the adjacent non-hydrogen atoms), and nuclear magnetic resoncance tensors was applied. To represent solvent effects, we used mixture-like structural simplex descriptors and quantum chemical descriptors obtained for structures optimized for specified solvent using PBE1PBE/6-31G** level of theory with the polarizable continuum model. Multiple linear regression, M5P, and locally weighted learning techniques were used to achieve accurate predictions. The specific quantum chemical descriptors proposed here demonstrated high specificity in the majority of the developed models and established direct quantitative structure–property relationships.

Keywords

Amino acid QSPR Optical rotation Chirality NMR tensors Quantum chemical descriptors Molecular descriptors 

Notes

Acknowledgments

The authors gratefully acknowledge the funding of this research by the Ministry of Education and Science of Ukraine (Project #0116U001520), National Science Foundation (NSF/CREST HRD-1547754) and PREM (DMR-1205194) grants. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (grant #ACI-1053575).

Supplementary material

894_2018_3593_MOESM1_ESM.docx (112 kb)
ESM 1 (DOCX 112 kb)

References

  1. 1.
    Norden B (1977) Was photoresolution of amino acids the origin of optical activity in life? Nature 266:567–568CrossRefGoogle Scholar
  2. 2.
    Randić M, Razinger M (1996) Molecular shapes and chirality. J Chem Inf Comput Sci 36:429–441.  https://doi.org/10.1021/ci950091x CrossRefGoogle Scholar
  3. 3.
    de Julián-Ortiz JV, de Gregorio Alapont C, Rios-Santamarina I et al (1998) Prediction of properties of chiral compounds by molecular topology. J Mol Graph Model 16:14–18.  https://doi.org/10.1016/S1093-3263(98)00013-8 CrossRefGoogle Scholar
  4. 4.
    Vol’kenshtein MV, Kruchek MP (1961) Optical activity of amino acids. J Struct Chem 2:49–52.  https://doi.org/10.1007/BF00744855 CrossRefGoogle Scholar
  5. 5.
    Zemlicka J (2000) Enantioselectivity of the antiviral effects of nucleoside analogues. Pharmacol Ther 85:251–266CrossRefGoogle Scholar
  6. 6.
    Maury G (2000) The enantioselectivity of enzymes involved in current antiviral therapy using nucleoside analogues: a new strategy? Antivir Chem Chemother 165–189Google Scholar
  7. 7.
    Mathé C, Gosselin G (2006)l-Nucleoside enantiomers as antivirals drugs: a mini-review. Antiviral Res 71:276–281.  https://doi.org/10.1016/j.antiviral.2006.04.017 CrossRefGoogle Scholar
  8. 8.
    Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). Oncol Break Res Pract Break Res Pract 67.  https://doi.org/10.4018/IJQSPR.2016010101
  9. 9.
    Gramatica P, Sangion A (2016) A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J Chem Inf Model 56:1127–1131CrossRefGoogle Scholar
  10. 10.
    Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz'min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Asteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010.  https://doi.org/10.1021/jm4004285 CrossRefGoogle Scholar
  11. 11.
    Pogliani L (1994) Structure property relationships of amino acids and some dipeptides. Amino Acids 6:141–153CrossRefGoogle Scholar
  12. 12.
    Pogliani L (1993) Molecular connectivity model for determination of physicochemical properties of. alpha.-amino acids. J Phys Chem 97:6731–6736CrossRefGoogle Scholar
  13. 13.
    Liu HX, Zhang RS, Yao XJ et al (2004) Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs. J Chem Inf Comput Sci 44:161–167CrossRefGoogle Scholar
  14. 14.
    Tham SY, Agatonovic-Kustrin S (2002) Application of the artificial neural network in quantitative structure–gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives. J Pharm Biomed Anal 28:581–590CrossRefGoogle Scholar
  15. 15.
    Zaliani A, Gancia E (1999) MS-WHIM scores for amino acids: a new 3D-description for peptide QSAR and QSPR studies. J Chem Inf Comput Sci 39:525–533CrossRefGoogle Scholar
  16. 16.
    Lin Z, Long H, Bo Z et al (2008) New descriptors of amino acids and their application to peptide QSAR study. Peptides 29:1798–1805CrossRefGoogle Scholar
  17. 17.
    Tian F, Zhou P, Li Z (2007) T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J Mol Struct 830:106–115CrossRefGoogle Scholar
  18. 18.
    Tong J, Liu S, Zhou P et al (2008) A novel descriptor of amino acids and its application in peptide QSAR. J Theor Biol 253:90–97CrossRefGoogle Scholar
  19. 19.
    Fauchère J-L, Lauterwein J (1985) The chemical shift of the alpha carbon in amino-acids as a parameter for QSAR studies of oligopeptides. Quant Struct Relationships 4:11–13.  https://doi.org/10.1002/qsar.19850040103 CrossRefGoogle Scholar
  20. 20.
    Mennucci B, Tomasi J, Cammi R et al (2002) Polarizable Continuum Model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113.  https://doi.org/10.1021/jp020124t CrossRefGoogle Scholar
  21. 21.
    Mukhopadhyay P, Zuber G, Goldsmith M-R et al (2006) Solvent effect on optical rotation: a case study of methyloxirane in water. ChemPhysChem 7:2483–2486.  https://doi.org/10.1002/cphc.200600477 CrossRefGoogle Scholar
  22. 22.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New YorkGoogle Scholar
  23. 23.
    Sarmah P, Deka RC (2009) DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect. J Comput Aided Mol Des 23:343–354.  https://doi.org/10.1007/s10822-009-9265-4 CrossRefGoogle Scholar
  24. 24.
    Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044.  https://doi.org/10.1021/cr950202r CrossRefGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenb DJ (2009) Gaussian 09, Gaussian, Inc., Wallingford CTGoogle Scholar
  26. 26.
    Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129.  https://doi.org/10.1016/0301-0104(81)85090-2 CrossRefGoogle Scholar
  27. 27.
    Okovytyy S, Kopteva S, Voronkov E et al (2013) 1H NMR spectra of N-Methyl-4-Tolyl-1-(4-Bromonaphthyl)-Amine and N-Phenyl-1-(4-Bromonaphthyl)-Amine: a combined experimental and theoretical study. Bull Dnipropetr Univ Chem 21:7–15CrossRefGoogle Scholar
  28. 28.
    Verma RP, Hansch C (2011) Use of 13C NMR chemical shift as QSAR/QSPR descriptor. Chem Rev 111:2865–2899.  https://doi.org/10.1021/cr100125d CrossRefGoogle Scholar
  29. 29.
    Zabrodsky H, Peleg S, Avnir D (1992) Continuous symmetry measures. J Am Chem Soc 114:7843–7851.  https://doi.org/10.1021/ja00046a033 CrossRefGoogle Scholar
  30. 30.
    Kuz’min V, Artemenko A, Muratov E (2008) Hierarchical QSAR technology based on the Simplex representation of molecular structure. J Comput Aided Mol De. 22:403–421Google Scholar
  31. 31.
    Muratov EN, Varlamova EV, Artemenko AG et al (2012) Existing and developing approaches for QSAR analysis of mixtures. Mol Inform 31:202–221.  https://doi.org/10.1002/minf.201100129 CrossRefGoogle Scholar
  32. 32.
    KNIME.com (2017) KNIME https://www.knime.com/
  33. 33.
    Gramatica P, Chirico N, Papa E et al (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132.  https://doi.org/10.1002/jcc.23361 CrossRefGoogle Scholar
  34. 34.
    Frank E, Hall M, Pfahringer B (2003) Locally weighted naive bayes. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence. Kaufmann, San Francisco, pp 249–256Google Scholar
  35. 35.
    Jones DE, Ghandehari H, Facelli JC (2016) A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Comput Methods Programs Biomed 132:93–103.  https://doi.org/10.1016/j.cmpb.2016.04.025 CrossRefGoogle Scholar
  36. 36.
    Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51:2320–2335.  https://doi.org/10.1021/ci200211n CrossRefGoogle Scholar
  37. 37.
    Gadaleta D, Mangiatordi GF, Catto M et al (2016) Applicability domain for QSAR models: where theory meets reality. Int J Quant Struct Relationships 1:45–63CrossRefGoogle Scholar
  38. 38.
    Roy K, Ambure P, Aher RB (2017) How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemom Intell Lab Syst 162:44–54.  https://doi.org/10.1016/j.chemolab.2017.01.010 CrossRefGoogle Scholar
  39. 39.
    Aniceto N, Freitas AA, Bender A, Ghafourian T (2016) A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood. J Cheminform 8:69.  https://doi.org/10.1186/s13321-016-0182-y CrossRefGoogle Scholar
  40. 40.
    Cao D-S, Deng Z-K, Zhu M-F et al (2017) Ensemble partial least squares regression for descriptor selection, outlier detection, applicability domain assessment, and ensemble modeling in QSAR/QSPR modeling. J Chemom 31:e2922.  https://doi.org/10.1002/cem.2922 CrossRefGoogle Scholar
  41. 41.
    Miller J, Parker AJ (1961) Dipolar aprotic solvents in bimolecular aromatic nucleophilic substitution reactions. J Am Chem Soc 83:117–123.  https://doi.org/10.1021/ja01462a023 CrossRefGoogle Scholar
  42. 42.
    Lutz O, Jirgensons B (1931) New method for the grouping of optically active a-amino acids in the dextro-or levo-series. II. Abhandlungen 64:1221–1232Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric SciencesJackson State UniversityJacksonUSA
  2. 2.Oles Honchar Dnipropetrovsk National UniversityDnipropetrovskUkraine

Personalised recommendations