Skip to main content
Log in

Are beryllium-containing biphenyl derivatives efficient anion sponges?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and stabilities of 2,2′-diBeX-1,1′-biphenyl (X = H, F, Cl, CN) derivatives and their affinities for F, Cl, and CN were theoretically investigated using a B3LYP/6–311 + G(3df,2p)//B3LYP/6–31 + G(d,p) model. The results obtained show that the 2,2′-diBeX-1,1′-biphenyl derivatives (X = H, F, Cl, CN) exhibit very high F, Cl, and CN affinities, albeit lower than those reported before for their 1,8-diBeX-naphthalene analogs, in spite of the fact that the biphenyl derivatives are more flexible than their naphthalene counterparts. Nevertheless, some of the biphenyl derivatives investigated are predicted to have anion affinities larger than those measured for SbF5, which is considered one of the strongest anion capturers. Therefore, although weaker than their naphthalene analogs, the 2,2′-diBeX-1,1′-biphenyl derivatives can still be considered powerful anion sponges. This study supports the idea that compounds containing –BeX groups in chelating positions behave as anion sponges due to the electron-deficient nature and consequently high intrinsic Lewis acidity of these groups.

Compounds containing –BeX groups in chelating positions, such as 2,2′-diBeX-1,1′-biphenyl (X = H, F, Cl, CN) derivatives, behave as anion sponges due to the electron-deficient nature of these groups

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100(1):143–167

    Article  CAS  Google Scholar 

  2. Karshikoff A (2006) Non-covalent interactions in proteins. World Scientific, Singapore

  3. Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063

    Article  CAS  Google Scholar 

  4. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, Cambridge

  5. Adeli M, Soleyman R, Beiranvand Z, Madani F (2013) Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chem Soc Rev 42(12):5231–5256

  6. Yan QF, Luo ZY, Cai K, Ma YG, Zhao DH (2014) Chemical designs of functional photoactive molecular assemblies. Chem Soc Rev 43(12):4199–4221

    Article  CAS  Google Scholar 

  7. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116(5):2775–2825

    Article  CAS  Google Scholar 

  8. Rodgers MT, Armentrout PB (2016) Cationic noncovalent interactions: energetics and periodic trends. Chem Rev 116(9):5642–5687

  9. Parrill AL, Lipkowitz KB, DiLabio GA, Otero-de-la-Roza A (2016) Noncovalent interactions in density functional theory (Reviews in Computational Chemistry, vol 29). Wiley, Hoboken

  10. Hermann J, DiStasio RA, Tkatchenko A (2017) First-principles models for van der Waals interactions in molecules and materials: concepts, theory, and applications. Chem Rev 117(6):4714–4758

    Article  CAS  Google Scholar 

  11. Ma YG, Politzer P (2004) Electronic density approaches to the energetics of noncovalent interactions. Int J Mol Sci 5(4–7):130–140

    Article  CAS  Google Scholar 

  12. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13(2):305–311

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13(6–7):643–650

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757

    Article  CAS  Google Scholar 

  15. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. J Mol Model 13(2):291–296

    Article  CAS  Google Scholar 

  16. Politzer P, Murray JS, Lane P (2007) Sigma-hole bonding and hydrogen bonding: competitive interactions. Int J Quant Chem 107(15):3046–3052

    Article  CAS  Google Scholar 

  17. Murray JS, Lane P, Politzer P (2009) Expansion of the sigma-hole concept. J Mol Model 15(6):723–729

    Article  CAS  Google Scholar 

  18. Kolar MH, Hobza P (2016) Computer modeling of halogen bonds and other sigma-hole interactions. Chem Rev 116(9):5155–5187

  19. Haartz JC, McDaniel DH (1973) Fluoride-ion affinity of some Lewis acids. J Am Chem Soc 95(26):8562–8565

  20. Pflugrath JW, Quiocho FA (1985) Sulfate sequestered in the sulfate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314(6008):257–260

  21. Luecke H, Quiocho FA (1990) High specificity of a phosphate-transport protein determined by hydrogen-bonds. Nature 347(6291):402–406

    Article  CAS  Google Scholar 

  22. Stephan H, Gloe K, Schiessl P, Schmidtchen FP (1995) Lipophilic ditopic guanidinium receptors—selective extractants for tetrahedral oxoanions. Supramol Chem 5(4):273–280

  23. Mangani S, Ferraroni M (1997) Natural anion receptors: anion recognition by proteins. In: Bianchi A, Bowman-James K, Garcia-Espafia E (eds) Supramolecular chemistry of anions. Wiley–VCH, Weinheim, pp 63–78

  24. Ihm H, Yun S, Kim HG, Kim JK, Kim KS (2002) Tripodal nitro-imidazolium receptor for anion binding driven by (C-H)(+)-X- hydrogen bonds. Org Lett 4(17):2897–2900

    Article  CAS  Google Scholar 

  25. Kang SO, Jeon S, Nam KC (2002) Anion recognition by urea derivatives of anthraquinone: dihydrogen phosphate ion selective neutral receptors. Supramol Chem 14(5):405–410

    Article  CAS  Google Scholar 

  26. Guo W, Wang J, He JQ, Li ZC, Cheng JP (2004) Polymethylene-bridged cystine-glycine-containing cyclopeptides as hydrogen-bonding electroneutral anion receptors: design, synthesis, and halide ion recognition. Supramol Chem 16(3):171–174

    Article  CAS  Google Scholar 

  27. Zhang Y, Li MX, Lu MY, Yang RH, Liu F, Li KA (2005) Anion chelation-induced porphyrin protonation and its application for chloride anion sensing. J Phys Chem A 109:7442–7448

  28. Melaimi M, Sole S, Chiu CW, Wang HD, Gabbai P (2006) Structural and electrochemical investigations of the high fluoride affinity of sterically hindered 1,8-bis(boryl)naphthalenes. Inorg Chem 45(20):8136–8143

    Article  Google Scholar 

  29. Blondeau P, Segura M, Perez-Fernandez R, de Mendoza J (2007) Molecular recognition of oxoanions based on guanidinium receptors. Chem Soc Rev 36(2):198–210

    Article  CAS  Google Scholar 

  30. Caltagirone C, Gale PA, Hiscock JR, Brooks SJ, Hursthouse MB, Light ME (2008) 1,3-Diindolylureas: high affinity dihydrogen phosphate receptors. Chem Commun 26:3007–3009

    Article  Google Scholar 

  31. Caltagirone C, Mulas A, Isaia F, Lippolis V, Gale PA, Light ME (2009) Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chem Commun 41:6279–6281

    Article  Google Scholar 

  32. Chen ZH, Amine K (2009) Computational estimates of fluoride affinity of boron-based anion receptors. J Electrochem Soc 156(8):A672–A676

    Article  CAS  Google Scholar 

  33. Hudnall TW, Chiu CW, Gabbai FP (2009) Fluoride ion recognition by chelating and cationic boranes. Acc Chem Res 42(2):388–397

  34. Kubik S (2009) Amino acid containing anion receptors. Chem Soc Rev 38(2):585–605

    Article  CAS  Google Scholar 

  35. Zhang ZG, Schreiner PR (2009) (Thio)urea organocatalysis—what can be learnt from anion recognition? Chem Soc Rev 38(4):1187–1198

  36. Amendola V, Fabbrizzi L, Mosca L (2010) Anion recognition by hydrogen bonding: urea-based receptors. Chem Soc Rev 39(10):3889–3915

    Article  CAS  Google Scholar 

  37. Hong SJ, Yoo J, Yoon DW, Yoon J, Kim JS, Lee CH (2010) Superior anion-binding properties of a cryptand-like oligopyrrolic macrocycle. Chem Asian J 5(4):768–772

    Article  CAS  Google Scholar 

  38. Li AF, Wang JH, Wang F, Jiang YB (2010) Anion complexation and sensing using modified urea and thiourea-based receptors. Chem Soc Rev 39(10):3729–3745

    Article  CAS  Google Scholar 

  39. Steed JW (2010) Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. Chem Soc Rev 39(10):3686–3699

    Article  CAS  Google Scholar 

  40. Zhao HY, Gabbai FP (2010) A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nat Chem 2(11):984–990

    Article  CAS  Google Scholar 

  41. Bergamaschi G, Boiocchi M, Monzani E, Amendola V (2011) Pyridinium/urea-based anion receptor: methine formation in the presence of basic anions. Org Biomol Chem 9(24):8276–8283

    Article  CAS  Google Scholar 

  42. Kraft A, Beck J, Krossing I (2011) Facile access to the pnictocenium ions Cp*ECl (+) (E = P, As) and (Cp*)(2)P (+): chloride ion affinity of Al(ORF)(3). Chem Eur J 17(46):12975–12980

  43. Wenzel M, Light ME, Davis AP, Gale PA (2011) Thiourea isosteres as anion receptors and transmembrane transporters. Chem Commun 47(27):7641–7643

    Article  CAS  Google Scholar 

  44. Caltagirone C, Bazzicalupi C, Bencini A, Isaia F, Garau A, Lippolis V (2012) Anion recognition properties of pyridine-2,6-dicarboxamide and isophthalamide derivatives containing L-tryptophan moieties. Supramol Chem 24(2):95–100

  45. Baggi G, Boiocchi M, Ciarrocchi C, Fabbrizzi L (2013) Enhancing the anion affinity of urea-based receptors with a Ru(terpy)(2)(2+) chromophore. Inorg Chem 52(9):5273–5283

  46. Zhao HY, Leamer LA, Gabbai FP (2013) Anion capture and sensing with cationic boranes: on the synergy of Coulombic effects and onium ion-centred Lewis acidity. Dalton Trans 42(23):8164–8178

    Article  CAS  Google Scholar 

  47. Datta S, Halder M (2014) Effect of encapsulation in the anion receptor pocket of sub-domain IIA of human serum albumin on the modulation of pK(a) of warfarin and structurally similar acidic guests: a possible implication on biological activity. J Photochem Photobiol B Biol 130:76–85

    Article  CAS  Google Scholar 

  48. Elmes RBP, Yuen KKY, Jolliffe KA (2014) Sulfate-selective recognition by using neutral dipeptide anion receptors in aqueous solution. Chem Eur J 20(24):7373–7380

    Article  CAS  Google Scholar 

  49. Sekutor M, Mlinaric-Majerski K (2014) Adamantyl aminoguanidines as receptors for oxo-anions. Tetrahedron Lett 55(49):6665–6670

    Article  CAS  Google Scholar 

  50. Elmes RBP, Jolliffe KA (2015) Anion recognition by cyclic peptides. Chem Commun 51(24):4951–4968

    Article  CAS  Google Scholar 

  51. Pandian TS, Kang J (2015) Participation of aliphatic C-H hydrogen bonding in anion recognition. Tetrahedron Lett 56(28):4191–4194

    Article  CAS  Google Scholar 

  52. Tepper R, Schulze B, Jager M, Friebe C, Scharf DH, Gorls H, Schubert US (2015) Anion receptors based on halogen bonding with halo-1,2,3-triazoliums. J Org Chem 80(6):3139–3150

  53. Amendola V, Bergamaschi G, Boiocchi M, Fusco N, La Rocca MV, Linati L, Lo Presti E, Mella M, Metrangolo P, Miljkovic A (2016) Novel hydrogen- and halogen-bonding anion receptors based on 3-iodopyridinium units. RSC Adv 6(72):67540–67549

    Article  CAS  Google Scholar 

  54. Amendola V, Bergamaschi G, Boiocchi M, Legnani L, Lo Presti E, Miljkovic A, Monzani E, Pancotti F (2016) Chloride-binding in organic–water mixtures: the powerful synergy of C-H donor groups within a bowl-shaped cavity. Chem Commun 52(72):10910–10913

  55. Edwards SJ, Marques I, Dias CM, Tromans RA, Lees NR, Felix V, Valkenier H, Davis AP (2016) Tilting and tumbling in transmembrane anion carriers: activity tuning through n-alkyl substitution. Chem Eur J 22(6):2004–2011

  56. Nehra A, Bandaru S, Yarramala DS, Rao CP (2016) Differential recognition of anions with selectivity towards F− by a calix 6 arene-thiourea conjugate investigated by spectroscopy, microscopy, and computational modeling by DFT. Chem Eur J 22(26):8903–8914

  57. Qi J, Jinghan H, Chen JJ, Sun Y, Li JB (2016) Cyanide detection using azo-acylhydrazone in aqueous media with high sensitivity and selectivity. Curr Anal Chem 12(2):119–123

  58. Wu HW, Chen YY, Rao CH, Liu CX (2016) Anion receptors based on CH donor group. Progr Chem 28(10):1501–1514

    Google Scholar 

  59. Molina P, Zapata F, Caballero A (2017) Anion recognition strategies based on combined noncovalent interactions. Chem Rev 117(15):9907–9972

    Article  CAS  Google Scholar 

  60. Kubik S (2010) Anion recognition in water. Chem Soc Rev 39(10):3648–3663

    Article  CAS  Google Scholar 

  61. Jenkins HDB, Krossing I, Passmore J, Raabe I (2004) A computational study of SbnF(5n) (n=1-4)—implications for the fluoride ion affinity of nSbF(5). J Fluor Chem 125(11):1585–1592

    Article  CAS  Google Scholar 

  62. Li SG, Dixon DA (2006) Molecular and electronic structures, Bronsted basicities, and Lewis acidities of group VIB transition metal oxide clusters. J Phys Chem A 110(19):6231–6244

    Article  CAS  Google Scholar 

  63. Brea O, Corral I, Mó O, Yáñez M, Alkorta I, Elguero J (2016) Beryllium-based anion sponges. Close relatives of proton sponges. Chem Eur J 22:18322–18325

    Article  CAS  Google Scholar 

  64. Montero-Campillo MM, Corral I, Mó O, Yáñez M, Alkorta I, Elguero J (2017) Beryllium-based fluorenes as efficient anion sponges. Phys Chem Chem Phys 19(34):23052–23059

    Article  CAS  Google Scholar 

  65. Christe KO, Dixon DA, McLemore D, Wilson WW, Sheehy JA, Boatz JA (2000) On a quantitative scale for Lewis acidity and recent progress in polynitrogen chemistry. J Fluor Chem 101(2):151–153

    Article  CAS  Google Scholar 

  66. Becke AD (1993) A new mixing of Hartree–Fock and local-density-functional theories. J Chem Phys 98(2):1372–1377

  67. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

  68. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):12

    Article  Google Scholar 

  69. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

  70. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926

  71. Biegler-König F, Schonbohm J, Bayles D (2001) Software news and updates—AIM2000—a program to analyze and visualize atoms in molecules. J Comput Chem 22(5):545–559

  72. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2004) NBO6.G. Theoretical Chemistry Institute, University of Wisconsin, Madison. http://www.chem.wisc.edu/~nbo5

Download references

Acknowledgements

This work was supported by the projects CTQ2015-63997-C2 and CTQ2013-43698-P of the Ministerio de Economía y Competitividad of Spain, by the project FOTOCARBON-CM S2013/MIT-2841 of the Comunidad Autónoma de Madrid, and by the COST Action CM1204. Computational time at the Centro de Computación Científica (CCC) of Universidad Autónoma de Madrid is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yáñez.

Additional information

This paper belongs to Topical Collection P. Politzer 80th Birthday Festschrift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brea, O., Mó, O., Yáñez, M. et al. Are beryllium-containing biphenyl derivatives efficient anion sponges?. J Mol Model 24, 16 (2018). https://doi.org/10.1007/s00894-017-3551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3551-1

Keywords

Navigation