Advertisement

Are beryllium-containing biphenyl derivatives efficient anion sponges?

  • Oriana Brea
  • Otilia Mó
  • Manuel Yáñez
  • M. Merced Montero-Campillo
  • Ibon Alkorta
  • José Elguero
Original Paper
Part of the following topical collections:
  1. P. Politzer 80th Birthday Festschrift

Abstract

The structures and stabilities of 2,2′-diBeX-1,1′-biphenyl (X = H, F, Cl, CN) derivatives and their affinities for F, Cl, and CN were theoretically investigated using a B3LYP/6–311 + G(3df,2p)//B3LYP/6–31 + G(d,p) model. The results obtained show that the 2,2′-diBeX-1,1′-biphenyl derivatives (X = H, F, Cl, CN) exhibit very high F, Cl, and CN affinities, albeit lower than those reported before for their 1,8-diBeX-naphthalene analogs, in spite of the fact that the biphenyl derivatives are more flexible than their naphthalene counterparts. Nevertheless, some of the biphenyl derivatives investigated are predicted to have anion affinities larger than those measured for SbF5, which is considered one of the strongest anion capturers. Therefore, although weaker than their naphthalene analogs, the 2,2′-diBeX-1,1′-biphenyl derivatives can still be considered powerful anion sponges. This study supports the idea that compounds containing –BeX groups in chelating positions behave as anion sponges due to the electron-deficient nature and consequently high intrinsic Lewis acidity of these groups.

Graphical Abstract

Compounds containing –BeX groups in chelating positions, such as 2,2′-diBeX-1,1′-biphenyl (X = H, F, Cl, CN) derivatives, behave as anion sponges due to the electron-deficient nature of these groups

Keywords

Anion sponges Be-containing biphenyl derivatives Density functional theory 

Notes

Acknowledgements

This work was supported by the projects CTQ2015-63997-C2 and CTQ2013-43698-P of the Ministerio de Economía y Competitividad of Spain, by the project FOTOCARBON-CM S2013/MIT-2841 of the Comunidad Autónoma de Madrid, and by the COST Action CM1204. Computational time at the Centro de Computación Científica (CCC) of Universidad Autónoma de Madrid is also gratefully acknowledged.

References

  1. 1.
    Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100(1):143–167CrossRefGoogle Scholar
  2. 2.
    Karshikoff A (2006) Non-covalent interactions in proteins. World Scientific, SingaporeGoogle Scholar
  3. 3.
    Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063CrossRefGoogle Scholar
  4. 4.
    Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, CambridgeGoogle Scholar
  5. 5.
    Adeli M, Soleyman R, Beiranvand Z, Madani F (2013) Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chem Soc Rev 42(12):5231–5256Google Scholar
  6. 6.
    Yan QF, Luo ZY, Cai K, Ma YG, Zhao DH (2014) Chemical designs of functional photoactive molecular assemblies. Chem Soc Rev 43(12):4199–4221CrossRefGoogle Scholar
  7. 7.
    Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116(5):2775–2825CrossRefGoogle Scholar
  8. 8.
    Rodgers MT, Armentrout PB (2016) Cationic noncovalent interactions: energetics and periodic trends. Chem Rev 116(9):5642–5687Google Scholar
  9. 9.
    Parrill AL, Lipkowitz KB, DiLabio GA, Otero-de-la-Roza A (2016) Noncovalent interactions in density functional theory (Reviews in Computational Chemistry, vol 29). Wiley, HobokenGoogle Scholar
  10. 10.
    Hermann J, DiStasio RA, Tkatchenko A (2017) First-principles models for van der Waals interactions in molecules and materials: concepts, theory, and applications. Chem Rev 117(6):4714–4758CrossRefGoogle Scholar
  11. 11.
    Ma YG, Politzer P (2004) Electronic density approaches to the energetics of noncovalent interactions. Int J Mol Sci 5(4–7):130–140CrossRefGoogle Scholar
  12. 12.
    Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13(2):305–311CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13(6–7):643–650CrossRefGoogle Scholar
  14. 14.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757CrossRefGoogle Scholar
  15. 15.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. J Mol Model 13(2):291–296CrossRefGoogle Scholar
  16. 16.
    Politzer P, Murray JS, Lane P (2007) Sigma-hole bonding and hydrogen bonding: competitive interactions. Int J Quant Chem 107(15):3046–3052CrossRefGoogle Scholar
  17. 17.
    Murray JS, Lane P, Politzer P (2009) Expansion of the sigma-hole concept. J Mol Model 15(6):723–729CrossRefGoogle Scholar
  18. 18.
    Kolar MH, Hobza P (2016) Computer modeling of halogen bonds and other sigma-hole interactions. Chem Rev 116(9):5155–5187Google Scholar
  19. 19.
    Haartz JC, McDaniel DH (1973) Fluoride-ion affinity of some Lewis acids. J Am Chem Soc 95(26):8562–8565Google Scholar
  20. 20.
    Pflugrath JW, Quiocho FA (1985) Sulfate sequestered in the sulfate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314(6008):257–260Google Scholar
  21. 21.
    Luecke H, Quiocho FA (1990) High specificity of a phosphate-transport protein determined by hydrogen-bonds. Nature 347(6291):402–406CrossRefGoogle Scholar
  22. 22.
    Stephan H, Gloe K, Schiessl P, Schmidtchen FP (1995) Lipophilic ditopic guanidinium receptors—selective extractants for tetrahedral oxoanions. Supramol Chem 5(4):273–280Google Scholar
  23. 23.
    Mangani S, Ferraroni M (1997) Natural anion receptors: anion recognition by proteins. In: Bianchi A, Bowman-James K, Garcia-Espafia E (eds) Supramolecular chemistry of anions. Wiley–VCH, Weinheim, pp 63–78Google Scholar
  24. 24.
    Ihm H, Yun S, Kim HG, Kim JK, Kim KS (2002) Tripodal nitro-imidazolium receptor for anion binding driven by (C-H)(+)-X- hydrogen bonds. Org Lett 4(17):2897–2900CrossRefGoogle Scholar
  25. 25.
    Kang SO, Jeon S, Nam KC (2002) Anion recognition by urea derivatives of anthraquinone: dihydrogen phosphate ion selective neutral receptors. Supramol Chem 14(5):405–410CrossRefGoogle Scholar
  26. 26.
    Guo W, Wang J, He JQ, Li ZC, Cheng JP (2004) Polymethylene-bridged cystine-glycine-containing cyclopeptides as hydrogen-bonding electroneutral anion receptors: design, synthesis, and halide ion recognition. Supramol Chem 16(3):171–174CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Li MX, Lu MY, Yang RH, Liu F, Li KA (2005) Anion chelation-induced porphyrin protonation and its application for chloride anion sensing. J Phys Chem A 109:7442–7448Google Scholar
  28. 28.
    Melaimi M, Sole S, Chiu CW, Wang HD, Gabbai P (2006) Structural and electrochemical investigations of the high fluoride affinity of sterically hindered 1,8-bis(boryl)naphthalenes. Inorg Chem 45(20):8136–8143CrossRefGoogle Scholar
  29. 29.
    Blondeau P, Segura M, Perez-Fernandez R, de Mendoza J (2007) Molecular recognition of oxoanions based on guanidinium receptors. Chem Soc Rev 36(2):198–210CrossRefGoogle Scholar
  30. 30.
    Caltagirone C, Gale PA, Hiscock JR, Brooks SJ, Hursthouse MB, Light ME (2008) 1,3-Diindolylureas: high affinity dihydrogen phosphate receptors. Chem Commun 26:3007–3009CrossRefGoogle Scholar
  31. 31.
    Caltagirone C, Mulas A, Isaia F, Lippolis V, Gale PA, Light ME (2009) Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chem Commun 41:6279–6281CrossRefGoogle Scholar
  32. 32.
    Chen ZH, Amine K (2009) Computational estimates of fluoride affinity of boron-based anion receptors. J Electrochem Soc 156(8):A672–A676CrossRefGoogle Scholar
  33. 33.
    Hudnall TW, Chiu CW, Gabbai FP (2009) Fluoride ion recognition by chelating and cationic boranes. Acc Chem Res 42(2):388–397Google Scholar
  34. 34.
    Kubik S (2009) Amino acid containing anion receptors. Chem Soc Rev 38(2):585–605CrossRefGoogle Scholar
  35. 35.
    Zhang ZG, Schreiner PR (2009) (Thio)urea organocatalysis—what can be learnt from anion recognition? Chem Soc Rev 38(4):1187–1198Google Scholar
  36. 36.
    Amendola V, Fabbrizzi L, Mosca L (2010) Anion recognition by hydrogen bonding: urea-based receptors. Chem Soc Rev 39(10):3889–3915CrossRefGoogle Scholar
  37. 37.
    Hong SJ, Yoo J, Yoon DW, Yoon J, Kim JS, Lee CH (2010) Superior anion-binding properties of a cryptand-like oligopyrrolic macrocycle. Chem Asian J 5(4):768–772CrossRefGoogle Scholar
  38. 38.
    Li AF, Wang JH, Wang F, Jiang YB (2010) Anion complexation and sensing using modified urea and thiourea-based receptors. Chem Soc Rev 39(10):3729–3745CrossRefGoogle Scholar
  39. 39.
    Steed JW (2010) Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. Chem Soc Rev 39(10):3686–3699CrossRefGoogle Scholar
  40. 40.
    Zhao HY, Gabbai FP (2010) A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nat Chem 2(11):984–990CrossRefGoogle Scholar
  41. 41.
    Bergamaschi G, Boiocchi M, Monzani E, Amendola V (2011) Pyridinium/urea-based anion receptor: methine formation in the presence of basic anions. Org Biomol Chem 9(24):8276–8283CrossRefGoogle Scholar
  42. 42.
    Kraft A, Beck J, Krossing I (2011) Facile access to the pnictocenium ions Cp*ECl (+) (E = P, As) and (Cp*)(2)P (+): chloride ion affinity of Al(ORF)(3). Chem Eur J 17(46):12975–12980Google Scholar
  43. 43.
    Wenzel M, Light ME, Davis AP, Gale PA (2011) Thiourea isosteres as anion receptors and transmembrane transporters. Chem Commun 47(27):7641–7643CrossRefGoogle Scholar
  44. 44.
    Caltagirone C, Bazzicalupi C, Bencini A, Isaia F, Garau A, Lippolis V (2012) Anion recognition properties of pyridine-2,6-dicarboxamide and isophthalamide derivatives containing L-tryptophan moieties. Supramol Chem 24(2):95–100Google Scholar
  45. 45.
    Baggi G, Boiocchi M, Ciarrocchi C, Fabbrizzi L (2013) Enhancing the anion affinity of urea-based receptors with a Ru(terpy)(2)(2+) chromophore. Inorg Chem 52(9):5273–5283Google Scholar
  46. 46.
    Zhao HY, Leamer LA, Gabbai FP (2013) Anion capture and sensing with cationic boranes: on the synergy of Coulombic effects and onium ion-centred Lewis acidity. Dalton Trans 42(23):8164–8178CrossRefGoogle Scholar
  47. 47.
    Datta S, Halder M (2014) Effect of encapsulation in the anion receptor pocket of sub-domain IIA of human serum albumin on the modulation of pK(a) of warfarin and structurally similar acidic guests: a possible implication on biological activity. J Photochem Photobiol B Biol 130:76–85CrossRefGoogle Scholar
  48. 48.
    Elmes RBP, Yuen KKY, Jolliffe KA (2014) Sulfate-selective recognition by using neutral dipeptide anion receptors in aqueous solution. Chem Eur J 20(24):7373–7380CrossRefGoogle Scholar
  49. 49.
    Sekutor M, Mlinaric-Majerski K (2014) Adamantyl aminoguanidines as receptors for oxo-anions. Tetrahedron Lett 55(49):6665–6670CrossRefGoogle Scholar
  50. 50.
    Elmes RBP, Jolliffe KA (2015) Anion recognition by cyclic peptides. Chem Commun 51(24):4951–4968CrossRefGoogle Scholar
  51. 51.
    Pandian TS, Kang J (2015) Participation of aliphatic C-H hydrogen bonding in anion recognition. Tetrahedron Lett 56(28):4191–4194CrossRefGoogle Scholar
  52. 52.
    Tepper R, Schulze B, Jager M, Friebe C, Scharf DH, Gorls H, Schubert US (2015) Anion receptors based on halogen bonding with halo-1,2,3-triazoliums. J Org Chem 80(6):3139–3150Google Scholar
  53. 53.
    Amendola V, Bergamaschi G, Boiocchi M, Fusco N, La Rocca MV, Linati L, Lo Presti E, Mella M, Metrangolo P, Miljkovic A (2016) Novel hydrogen- and halogen-bonding anion receptors based on 3-iodopyridinium units. RSC Adv 6(72):67540–67549CrossRefGoogle Scholar
  54. 54.
    Amendola V, Bergamaschi G, Boiocchi M, Legnani L, Lo Presti E, Miljkovic A, Monzani E, Pancotti F (2016) Chloride-binding in organic–water mixtures: the powerful synergy of C-H donor groups within a bowl-shaped cavity. Chem Commun 52(72):10910–10913Google Scholar
  55. 55.
    Edwards SJ, Marques I, Dias CM, Tromans RA, Lees NR, Felix V, Valkenier H, Davis AP (2016) Tilting and tumbling in transmembrane anion carriers: activity tuning through n-alkyl substitution. Chem Eur J 22(6):2004–2011Google Scholar
  56. 56.
    Nehra A, Bandaru S, Yarramala DS, Rao CP (2016) Differential recognition of anions with selectivity towards F− by a calix 6 arene-thiourea conjugate investigated by spectroscopy, microscopy, and computational modeling by DFT. Chem Eur J 22(26):8903–8914Google Scholar
  57. 57.
    Qi J, Jinghan H, Chen JJ, Sun Y, Li JB (2016) Cyanide detection using azo-acylhydrazone in aqueous media with high sensitivity and selectivity. Curr Anal Chem 12(2):119–123Google Scholar
  58. 58.
    Wu HW, Chen YY, Rao CH, Liu CX (2016) Anion receptors based on CH donor group. Progr Chem 28(10):1501–1514Google Scholar
  59. 59.
    Molina P, Zapata F, Caballero A (2017) Anion recognition strategies based on combined noncovalent interactions. Chem Rev 117(15):9907–9972CrossRefGoogle Scholar
  60. 60.
    Kubik S (2010) Anion recognition in water. Chem Soc Rev 39(10):3648–3663CrossRefGoogle Scholar
  61. 61.
    Jenkins HDB, Krossing I, Passmore J, Raabe I (2004) A computational study of SbnF(5n) (n=1-4)—implications for the fluoride ion affinity of nSbF(5). J Fluor Chem 125(11):1585–1592CrossRefGoogle Scholar
  62. 62.
    Li SG, Dixon DA (2006) Molecular and electronic structures, Bronsted basicities, and Lewis acidities of group VIB transition metal oxide clusters. J Phys Chem A 110(19):6231–6244CrossRefGoogle Scholar
  63. 63.
    Brea O, Corral I, Mó O, Yáñez M, Alkorta I, Elguero J (2016) Beryllium-based anion sponges. Close relatives of proton sponges. Chem Eur J 22:18322–18325CrossRefGoogle Scholar
  64. 64.
    Montero-Campillo MM, Corral I, Mó O, Yáñez M, Alkorta I, Elguero J (2017) Beryllium-based fluorenes as efficient anion sponges. Phys Chem Chem Phys 19(34):23052–23059CrossRefGoogle Scholar
  65. 65.
    Christe KO, Dixon DA, McLemore D, Wilson WW, Sheehy JA, Boatz JA (2000) On a quantitative scale for Lewis acidity and recent progress in polynitrogen chemistry. J Fluor Chem 101(2):151–153CrossRefGoogle Scholar
  66. 66.
    Becke AD (1993) A new mixing of Hartree–Fock and local-density-functional theories. J Chem Phys 98(2):1372–1377Google Scholar
  67. 67.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789Google Scholar
  68. 68.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):12CrossRefGoogle Scholar
  69. 69.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, OxfordGoogle Scholar
  70. 70.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926Google Scholar
  71. 71.
    Biegler-König F, Schonbohm J, Bayles D (2001) Software news and updates—AIM2000—a program to analyze and visualize atoms in molecules. J Comput Chem 22(5):545–559Google Scholar
  72. 72.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2004) NBO6.G. Theoretical Chemistry Institute, University of Wisconsin, Madison. http://www.chem.wisc.edu/~nbo5

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Stockholm University, Department of Organic Chemistry, Arrhenius LaboratoryStockholmSweden
  2. 2.Departamento de Química, Facultad de Ciencias, Módulo 13, and Institute of Advanced Chemical Sciences (IadChem)Universidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Química Médica, CSICMadridSpain

Personalised recommendations