Advertisement

Journal of Molecular Modeling

, 23:328 | Cite as

Pnictogen bonding in pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes

  • Jindřich Fanfrlík
  • Wiktor Zierkiewicz
  • Petr Švec
  • Zdeňka Růžičková
  • Jan Řezáč
  • Mariusz Michalczyk
  • Aleš Růžička
  • Danuta Michalska
  • Pavel Hobza
Original Paper
Part of the following topical collections:
  1. P. Politzer 80th Birthday Festschrift

Abstract

This paper presents a study of pnictogen bonding in a series of pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. The whole series was studied computationally. Moreover, the pyrazine complexes with PCl5 and SbCl5 were prepared and characterized experimentally. It was found that the Pn-N distances are only slightly elongated when compared to the sum of covalent radii. The conformation of PnX5 changed considerably upon the complex formation, which resulted in a significant change of the dipole moment of the PnX5 fragment and a considerably more positive σ-hole on the pnictogen atom. Finally, interaction energies were decomposed in order to provide a deeper insight into the nature of the studied pnictogen-bonded complexes.

Graphical abstract

The conformation of PnX5 changed considerably upon the complex formation, which resulted in a considerably more positive σ-hole on the pnictogen atom.

Keywords

Pnictogen bond Interaction energy decomposition σ-hole magnitude Deformation energy X-ray crystallography Charge transfer 

Notes

Acknowledgments

The authors wish to acknowledge the synthetic assistance of Ing. Zdeňka Janíková (University of Pardubice). We would also like to thank Robert Sedlák, Ph.D., and Olga Stasyuk, Ph.D., for their help with the EDA decomposition. This work was partly financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wroclaw University of Science and Technology. Generous computer time from the Wroclaw Supercomputer and Networking Center is acknowledged. This work was supported by the research project RVO 61388963 of the Czech Academy of Sciences. The support of the Czech Science Foundation (JF, JR, PH: P208/12/G016 and AR: 17-10377S) is gratefully acknowledged.

Supplementary material

894_2017_3502_MOESM1_ESM.doc (462 kb)
ESM 1 (DOC 462 kb)

References

  1. 1.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  2. 2.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  3. 3.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  4. 4.
    Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665CrossRefGoogle Scholar
  5. 5.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  6. 6.
    Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052CrossRefGoogle Scholar
  7. 7.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theory Comput 5:155–163CrossRefGoogle Scholar
  8. 8.
    Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  9. 9.
    Tsuzuki S, Sato N (2013) J Phys Chem A 117:6849–6855CrossRefGoogle Scholar
  10. 10.
    Rezac J, De la Lande A (2017) Phys Chem Chem Phys 19:791–803CrossRefGoogle Scholar
  11. 11.
    Murray J, Lane P, Clark T, Riley K, Politzer P (2012) J Mol Model 18:541–548CrossRefGoogle Scholar
  12. 12.
    Kolar M, Hostas J, Hobza P (2014) Phys Chem Chem Phys 16:9987–9996CrossRefGoogle Scholar
  13. 13.
    Riley KE, Hobza P (2013) Phys Chem Chem Phys 15:17742–17751CrossRefGoogle Scholar
  14. 14.
    Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model 17:3309–3318CrossRefGoogle Scholar
  15. 15.
    Fanfrlík J, Kolář M, Kamlar M, Hurný D, Ruiz FX, Cousido-Siah A, Mitschler A, Řezáč J, Munusamy E, Lepšík M, Matějíček P, Veselý J, Podjarny A, Hobza P (2013) ACS Chem Biol 8:2484–2492CrossRefGoogle Scholar
  16. 16.
    Bauza A, Quinonero D, Frontera A, Deya PM (2011) Phys Chem Chem Phys 13:20371–20379CrossRefGoogle Scholar
  17. 17.
    Sarwar MG, Bojan D, Salsberg LJ, Gouliaras C, Taylor MS (2010) J Am Chem Soc 132:1646–1653CrossRefGoogle Scholar
  18. 18.
    Torli H, Yoshida M (2010) J Comput Chem 31:107–116CrossRefGoogle Scholar
  19. 19.
    Liu F, Du L, Gao J, Wang L, Song B, Liu C (2015) J Comput Chem 36:441–448CrossRefGoogle Scholar
  20. 20.
    Scheiner S (2012) Acc Chem Res 46:280–288CrossRefGoogle Scholar
  21. 21.
    Joy J, Jose A, Jemmis ED (2016) J Comput Chem 37:270–279CrossRefGoogle Scholar
  22. 22.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) J Phys Chem A 115:13724–13731CrossRefGoogle Scholar
  23. 23.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  24. 24.
    Grabowski SJ, Alkorta I, Elguero J (2013) J Phys Chem A 117:3243–3251CrossRefGoogle Scholar
  25. 25.
    Vickaryous WJ, Healey ER, Berryman OB, Johnson DW (2005) Inorg Chem 44:9247–9252CrossRefGoogle Scholar
  26. 26.
    Cangelosi VM, Zakharov LN, Johnson D (2010) Angew Chem Int Ed 49:1248–1251CrossRefGoogle Scholar
  27. 27.
    Liu C, Zeng Y, Li X, Meng L, Zhang X (2015) J Mol Model 21:143CrossRefGoogle Scholar
  28. 28.
    Shukla R, Chopra D (2016) Phys Chem Chem Phys 18:13820–13829CrossRefGoogle Scholar
  29. 29.
    Esrafili M, Mohammadian-Sabet F, Vessally E (2016) Molecular Physics 114:2115–2122CrossRefGoogle Scholar
  30. 30.
    Alkorta I, Elguero J (2013) J Phys Chem A 117:4981–4987CrossRefGoogle Scholar
  31. 31.
    Del Bene JE, Alkorta I, Elguero J (2013) J Phys Chem A 117:11592–11604CrossRefGoogle Scholar
  32. 32.
    Liu F, Du L, Gao J, Wang L, Song B (2015) Liu. J Comput Chem 36:441–448CrossRefGoogle Scholar
  33. 33.
    Scheiner S (2011) Chem Phys 387:79–84CrossRefGoogle Scholar
  34. 34.
    Esrafili M, Mohammadian-Sabet F (2016) Chem Phys Letters 650:52–56CrossRefGoogle Scholar
  35. 35.
    Fanfrlík J, Švec P, Růžičková Z, Hnyk D, Růžička A, Hobza P (2017) Crystals 7:225CrossRefGoogle Scholar
  36. 36.
    Lo R, Švec P, Růžičková Z, Růžička A, Hobza P (2016) Chem Commun 52:3500–3503CrossRefGoogle Scholar
  37. 37.
    Vránová I, Jambor R, Růžička A, Hoffmann A, Herres-Pawlis S, Dostál L (2015) Dalton Trans 44:395–400CrossRefGoogle Scholar
  38. 38.
    Sheldrick WS (1974) J Chem Soc, Dalton Trans 0:1402CrossRefGoogle Scholar
  39. 39.
    Meyer BN, Ishley JN, Fratini AV, Knachel HC (1980) Inorg Chem 19:2324–2327CrossRefGoogle Scholar
  40. 40.
    Sham IHT, Patrick BO, Ashen B, Ashen S, Willner H, Thompson RC, Aubke F (2002) Solid State Sci 4:1457–1463CrossRefGoogle Scholar
  41. 41.
    Tornieporth-Oetting IC, Klapotke TM, Behrens U, White PS (1992) J Chem Soc Dalton Trans 13:2055-2058. doi:10.1039/DT9920002055Google Scholar
  42. 42.
    Chen SJ, Berens U, Oblich F, Mews H (1993) Z Anorg Allg Chem 1993(619):1725–1728CrossRefGoogle Scholar
  43. 43.
    Schroter M, Lork E, Mews R (2005) Z Anorg Allg Chem 631:1609–1614CrossRefGoogle Scholar
  44. 44.
    Binas H (1967) Z Anorg Allg Chem 352:271CrossRefGoogle Scholar
  45. 45.
    Jochims JC, Abu-el-Halawa R, Zsolnai L, Huttner G (1984) Chem Ber 117:1161–1177CrossRefGoogle Scholar
  46. 46.
    Klapötke TM, Noth H, Schutt T, Sutter M, Warchhold M (2001) Z Anorg Allg Chem 627:1582–1588CrossRefGoogle Scholar
  47. 47.
    Hausen HD, Schwarz W, Rajca G, Weidlein J (1986) Z Naturforsch 41b:1223–1229Google Scholar
  48. 48.
    Patton RL, Raymond KN (1969) Inorg Chem 8:2426–2431CrossRefGoogle Scholar
  49. 49.
    Bellard S, Rivera AV, Sheldrick GM (1978) Acta Cryst B34:1034–1035CrossRefGoogle Scholar
  50. 50.
    Apblett A, Chivers T, Richardson JF (1986) Can J Chem 64:849CrossRefGoogle Scholar
  51. 51.
    Esrafili M, Mohammadirad N (2016) Struct Chem 27:939–946CrossRefGoogle Scholar
  52. 52.
    Frankel M, Patai S, Zikha A, Farkes R, Rappoport Z (1967) Organic compound identification. Hebrew University of Jerusalem, Israel. CRC, Boca Raton, FLGoogle Scholar
  53. 53.
    Sheldrick GM (2015) Acta Crystallogr Sect C 71:3–8CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  55. 55.
    Weigend F (2006) Phys Chem Chem Phys 8:1057–1065CrossRefGoogle Scholar
  56. 56.
    Peterson AK (2003) J Chem Phys 119:11099CrossRefGoogle Scholar
  57. 57.
    Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563CrossRefGoogle Scholar
  58. 58.
    Frisch MJ et al. (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  59. 59.
    Ahlrichs R, Bär M, Häser M, Hom M, Kölmel C (1989) Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  60. 60.
    Řezáč J (2016) J Comput Chem 37:1230–1237CrossRefGoogle Scholar
  61. 61.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252CrossRefGoogle Scholar
  62. 62.
    Bulat FA, Toro-labbe A, Brinck TE, Murray JS, Politzer P (2016) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  63. 63.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  64. 64.
    Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) WIREs Comput Mol Sci 2:242CrossRefGoogle Scholar
  65. 65.
    Werner H-J et al. (2012) MOLPRO, version 2012.1, a package of ab initio programs. http://www.molpro.net
  66. 66.
    Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  67. 67.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403Google Scholar
  68. 68.
    ADF (2014) SCM. Theoretical chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com
  69. 69.
    Řezáč J, De la Lande A (2015) J Chem Theory Comput 11:528–537CrossRefGoogle Scholar
  70. 70.
    Koster AM, Geudtner G, Alvarez-Ibarra A et al. (2016) deMon2k, version 4. Cinvestav, Mexico City. http://demon-software.com/public_html/index.html
  71. 71.
    Dillon KB, Reeve RN, Waddington TC (1977) J Chem Soc Dalton Trans 1977:1410–1416CrossRefGoogle Scholar
  72. 72.
    Pyykkö P, Atsumi M (2009) Chem Eur J 15:186–197CrossRefGoogle Scholar
  73. 73.
    Scilaba P, Terraneo G, Resnati G (2017) J Fluorine Chem,  https://doi.org/10.1016/j.jfluchem.2017.10.002
  74. 74.
    Sedlak R, Rezac J (2017) J Chem Theory Comput 13:1638–1646CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
  2. 2.Faculty of ChemistryWrocław University of Science and TechnologyWrocławPoland
  3. 3.Department of General and Inorganic Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  4. 4.Regional Center of Advanced Technologies and Materials, Department of Physical ChemistryPalacký UniversityOlomoucCzech Republic

Personalised recommendations