New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists

  • Aline A. Oliveira
  • Célio F. Lipinski
  • Estevão B. Pereira
  • Kathia M. Honorio
  • Patrícia R. Oliveira
  • Karen C. Weber
  • Roseli A. F. Romero
  • Alexsandro G. de Sousa
  • Albérico B. F. da SilvaEmail author
Original Paper
Part of the following topical collections:
  1. QUITEL 2016


The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r2 training = 0.761, q2 = 0.656, r2 test = 0.746, MSEtest = 0.132 and MAEtest = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSEtest values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r2 test = 0.824, MSEtest = 0.088 and MAEtest = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r2 test = 0.811, MSEtest = 0.100 and MAEtest = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and μ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment.

Graphical abstract

Main scaffold of the 1-arylpyrazole derivatives and the selected descriptors.


Sigma-1 receptor 1-arylpyrazole QSAR PLS MLP-ANN Consensus modeling 



The authors would like to thank CNPq, CAPES, and FAPESP (Brazilian agencies) for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

894_2017_3444_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)


  1. 1.
    Jensen TS, Baron R, Haanpää M, et al. (2011) A new definition of neuropathic pain. Pain 152:2204–2205CrossRefGoogle Scholar
  2. 2.
    Boureau F, Doubrère JF, Luu M (1990) Study of verbal description in neuropathic pain. Pain 42:145–152CrossRefGoogle Scholar
  3. 3.
    Galluzzi KE (2007) Managing neuropathic pain. J Am Osteopath Assoc 107(11 Suppl 6):ES39–ES48Google Scholar
  4. 4.
    Nightingale S (2012) The neuropathic pain market. Nat Rev Drug Discov 11:101–102CrossRefGoogle Scholar
  5. 5.
    Martin WR, Eades CG, Thompson JA, et al. (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532Google Scholar
  6. 6.
    Hellewell SB, Bowen WD (1990) A sigma-like binding site in rat pheochromocytoma (PC12) Cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res 527:244–253CrossRefGoogle Scholar
  7. 7.
    Quirion R, Bowen WD, Itzhak Y, et al. (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86CrossRefGoogle Scholar
  8. 8.
    Gundlach AL, Largent BL, Snyder SH (1986) Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J Neurosci 6:1757–1770Google Scholar
  9. 9.
    Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206CrossRefGoogle Scholar
  10. 10.
    Wolfe Jr SA, Culp SG, de Souza EB (1989) Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary. Endocrinology 124:1160–1172CrossRefGoogle Scholar
  11. 11.
    Hayashi T, Su TP (2004) σ-1 Receptor Ligands: Potential in the Treatment of Neuropsychiatric Disorders. CNS Drugs 18:269–284CrossRefGoogle Scholar
  12. 12.
    Díaz JL, Cuberes R, Berrocal J, et al. (2012) Synthesis and biological evaluation of the 1-arylpyrazole class of σ1 receptor antagonists: identification of 4-{2-[5-methyl-1-(naphthalen- 2-Yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862). J Med Chem 55:8211–8224CrossRefGoogle Scholar
  13. 13.
    Romero L, Zamanillo D, Nadal X, et al. (2012) Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol 166:2289–2306CrossRefGoogle Scholar
  14. 14.
    Abadias M, Escriche M, Vaqué A, et al. (2012) Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol 75:103–117CrossRefGoogle Scholar
  15. 15.
    Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13:3494–3504CrossRefGoogle Scholar
  16. 16.
    Lozano NBH, Oliveira RF, Weber KC, et al. (2013) Identification of electronic and structural descriptors of adenosine analogues related to inhibition of leishmanial glyceraldehyde-3-phosphate dehydrogenase. Molecules 18:5032–5050CrossRefGoogle Scholar
  17. 17.
    Lozano NBH, Maltarollo VG, Weber KC, et al. (2012) Molecular features for antitrypanosomal activity of thiosemicarbazones revealed by OPS-PLS QSAR studies. Med Chem (Los Angeles) 8:1045–1056Google Scholar
  18. 18.
    Honório KM, de Lima EF, Quiles MG, et al. (2010) Artificial neural networks and the study of the psychoactivity of cannabinoid compounds. Chem Biol Drug Des 75:632–640CrossRefGoogle Scholar
  19. 19.
    Weber KC, da Silva ABF (2008) A chemometric study of the 5-HT1A receptor affinities presented by arylpiperazine compounds. Eur J Med Chem 43:364–372CrossRefGoogle Scholar
  20. 20.
    de Molfetta FA, Angelotti WFD, Romero RAF, et al. (2008) A neural networks study of quinone compounds with trypanocidal activity. J Mol Model 14:975–985CrossRefGoogle Scholar
  21. 21.
    Weber KC, Honório KM, Bruni AT, et al. (2006) A partial least squares regression study with antioxidant flavonoid compounds. Struct Chem 17:307–313CrossRefGoogle Scholar
  22. 22.
    Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a pratical guide. Wiley, New YorkGoogle Scholar
  23. 23.
    Zupan J (2003) Basics of artificial neural networks. In: Leardi R (ed) Nature-inspired methods in chemometrics: genetic algorithms and artificial neural networks. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Zhu H, Tropsha A, Fourches D, et al. (2008) Combinatorial QSAR modeling of chemical toxicants tested against tetrahymena pyriformis. J Chem Inf Model 48:766–784CrossRefGoogle Scholar
  25. 25.
    Nizami B, Tetko IV, Koorbanally NA, Honarparvar B (2015) QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors. Chemom Intell Lab Syst 148:134–144CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  27. 27.
    Tetko IV, Gasteiger J, Todeschini R, et al. (2005) Virtual computational chemistry laboratory - design and description. J Comput Aided Mol Des 19:453–463CrossRefGoogle Scholar
  28. 28.
    de Oliveira DB, Gaudio AC (2000) BuildQSAR: a new computer program for QSAR analysis. Quant Struct Relationships 19:599–601CrossRefGoogle Scholar
  29. 29.
    Infometrix Inc. (2002) Pirouette 3.10. Infometrix Inc, WoodinvilleGoogle Scholar
  30. 30.
    Martins JPA, Ferreira MMC (2013) QSAR modeling: a new open source computational package to generate and validate QSAR models. Quim Nova 36:554–560CrossRefGoogle Scholar
  31. 31.
    MathWorks (2011) MATLAB 7.12. The MathWorks Inc, NatickGoogle Scholar
  32. 32.
    Haykin S (1999) In: Haykin SS (ed) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  33. 33.
    Naik AR, Shafi PM, Kosbatwar SP (2013) Weather prediction using error minimization algorithm on feedforward artificial neural network. In: Mohapatra DP, Patnaik S (eds) Intelligent computing, networking, and informatics. Springer, New Delhi, pp 967–973Google Scholar
  34. 34.
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488CrossRefGoogle Scholar
  35. 35.
    Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77CrossRefGoogle Scholar
  36. 36.
    Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787CrossRefGoogle Scholar
  37. 37.
    Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. Wiley-VCH, New YorkGoogle Scholar
  38. 38.
    Eriksson L, Jaworska J, Worth AP, et al. (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375CrossRefGoogle Scholar
  39. 39.
    Gálvez J, Garcia R, Salabert MT, Soler R (1994) Charge indexes. New topological descriptors. J Chem Inf Comput Sci 34:520–525CrossRefGoogle Scholar
  40. 40.
    Gálvez J, García-Domenech R, de Julián-Ortiz JV, Soler R (1995) Topological approach to drug design. J Chem Inf Comput Sci 35:272–284CrossRefGoogle Scholar
  41. 41.
    Glennon RA, Ablordeppey SY, Ismaiel AM, et al. (1994) Structural features important for σ1 receptor binding. J Med Chem 37:1214–1219CrossRefGoogle Scholar
  42. 42.
    Laurini E, Col VD, Mamolo MG, et al. (2011) Homology model and docking-based virtual screening for ligands of the σ1 receptor. ACS Med Chem Lett 2:834–839CrossRefGoogle Scholar
  43. 43.
    Rücker G, Rücker C (1993) Counts of all walks as atomic and molecular descriptors. J Chem Inf Comput Sci 33:683–695CrossRefGoogle Scholar
  44. 44.
    Schuur JH, Selzer P, Gasteiger J (1996) The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344CrossRefGoogle Scholar
  45. 45.
    Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692CrossRefGoogle Scholar
  46. 46.
    Moriguchi I, Hirono S, Liu Q, et al. (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull 40:127–130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Aline A. Oliveira
    • 1
    • 2
  • Célio F. Lipinski
    • 1
  • Estevão B. Pereira
    • 1
  • Kathia M. Honorio
    • 2
  • Patrícia R. Oliveira
    • 2
  • Karen C. Weber
    • 3
  • Roseli A. F. Romero
    • 4
  • Alexsandro G. de Sousa
    • 5
  • Albérico B. F. da Silva
    • 1
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil
  3. 3.Centro de Ciências Exatas e da NaturezaUniversidade Federal da Paraíba, Cidade UniversitáriaJoão PessoaBrazil
  4. 4.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  5. 5.Universidade Estadual do Sudoeste da BahiaItapetingaBrazil

Personalised recommendations