Advertisement

Modification of 56ACARBO force field for molecular dynamic calculations of chitosan and its derivatives

  • Vladimir S. Naumov
  • Stanislav K. Ignatov
Original Paper

Abstract

The GROMOS 56ACARBO force field for the description of carbohydrates was modified for calculations of chitosan (poly–1,4–(N–acetyl)–β–D–glucopyranosamine–2) with protonated and non-protonated amino groups and its derivatives. Additional parameterization was developed on the basis of quantum chemical calculations. The modified force field (56ACARBO_CHT) allows performing the molecular dynamic calculations of chitosans with different degrees of protonation corresponding to various acidity of medium. Test calculations of the conformational transitions in the chitosan rings and polymeric chains as well as the chitosan nanocrystal dissolution demonstrate good agreement with experimental data.

Graphical abstract

The GROMOS 56ACARBO_CHT force field allows performing the molecular dynamic calculations of chitosans with different types of amio-group: free, protonated, substituted

Keywords

Chitosan Chitin Molecular dynamics 56ACARBO Force field extension 

Notes

Acknowledgements

This work was partially supported by the Russian Foundation for Basic Research (Project No. 14-03-00585). The authors acknowledge the computer facility of the University of Nizhny Novgorod for providing the resources on the “Lobachevsky” supercomputer. We also express our gratitude to one of the anonymous reviewers for his/her attention, time, and valuable suggestions on the improvement of the manuscript.

Supplementary material

894_2017_3421_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb).

References

  1. 1.
    Aydın RST, Pulat M (2012) 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater 2012:10Google Scholar
  2. 2.
    Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13(4):536–557CrossRefGoogle Scholar
  3. 3.
    Riva R, Ragelle H, Rieux A et al. (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials II. Springer, Berlin, pp. 19–44Google Scholar
  4. 4.
    Ghaz-Jahanian M et al. (2015) Application of chitosan-based Nanocarriers in tumor-targeted drug delivery. Mol Biotechnol 57(3):201–218CrossRefGoogle Scholar
  5. 5.
    Pedroni VI et al. (2003) Chitosan structure in aqueous solution. Colloid Polym Sci 282(1):100–102CrossRefGoogle Scholar
  6. 6.
    Pedroni VI, Gschaider ME, Schulz PC (2003) UV spectrophotometry: improvements in the study of the degree of acetylation of chitosan. Macromol Biosci 3(10):531–534CrossRefGoogle Scholar
  7. 7.
    Li Q-X et al. (2006) Electrolytic conductivity behaviors and solution conformations of chitosan in different acid solutions. Carbohydr Polym 63(2):272–282CrossRefGoogle Scholar
  8. 8.
    Noid WG (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139(9):090901CrossRefGoogle Scholar
  9. 9.
    Pigaleva MA et al. (2014) Stabilization of chitosan aggregates at the nanoscale in solutions in carbonic acid Macromolecules 47(16):5749–5758CrossRefGoogle Scholar
  10. 10.
    Glukhova OE, et al (2015) Structure and properties of composites based chitosan and carbon nanostructures: atomistic and coarse-grained simulationGoogle Scholar
  11. 11.
    Kossovich E et al. (2014) Hybrid coarse-grained/atomistic model of “chitosan + carbon nanostructures” composites. J Mol Model 20(10):1–7CrossRefGoogle Scholar
  12. 12.
    Hansen HS, Hunenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32(6):998–1032CrossRefGoogle Scholar
  13. 13.
    Lins RD, Hunenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26(13):1400–1412CrossRefGoogle Scholar
  14. 14.
    Oostenbrink C et al. (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676CrossRefGoogle Scholar
  15. 15.
    Foley BL, Tessier MB, Woods RJ (2012) Carbohydrate force fields. Comput Mol Sci 2(4):652–697CrossRefGoogle Scholar
  16. 16.
    Schmid N et al. (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J Biophys Lett 40(7):843–856CrossRefGoogle Scholar
  17. 17.
    Plazinski W, Lonardi A, Hünenberger PH (2016) Revision of the GROMOS 56A6CARBO force field: improving the description of ring-conformational equilibria in hexopyranose-based carbohydrates chains. J Comput Chem 37(3):354–365CrossRefGoogle Scholar
  18. 18.
    Franca EF et al. (2008) Characterization of chitin and chitosan molecular structure in aqueous solution. J Chem Theory Comput 4(12):2141–2149CrossRefGoogle Scholar
  19. 19.
    Franca EF, Freitas LCG, Lins RD (2011) Chitosan molecular structure as a function of N-acetylation. Biopolymers 95(7):448–460CrossRefGoogle Scholar
  20. 20.
    Plazinski W, Drach M (2014) The dynamics of the conformational changes in the hexopyranose ring: a transition path sampling approach. RSC Adv 4(48):25028–25039CrossRefGoogle Scholar
  21. 21.
    Plazinski W, Drach M (2015) The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations. Carbohydr Res 415:17–27CrossRefGoogle Scholar
  22. 22.
    Malde AK et al. (2011) An automated force field topology builder (ATB) and repository: version 1.0 J Chem Theory Comput 7(12):4026–4037CrossRefGoogle Scholar
  23. 23.
    Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228CrossRefGoogle Scholar
  24. 24.
    Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909CrossRefGoogle Scholar
  25. 25.
    Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145CrossRefGoogle Scholar
  26. 26.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11(3):361–373CrossRefGoogle Scholar
  27. 27.
    Angyal SJ (1968) Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α : β ratios of aldopyranoses in aqueous solution. Aust J Chem 21(11):2737–2746CrossRefGoogle Scholar
  28. 28.
    Angyal SJ (1969) The composition and conformation of sugars in solution. Angew Chem Int Ed Engl 8(3):157–166CrossRefGoogle Scholar
  29. 29.
    Angyal SJ (1984) The composition of reducing sugars in solution. Adv Carbohydr Chem Biochem 42:15–68CrossRefGoogle Scholar
  30. 30.
    Vijayalakshmi KS, Rao VSR (1972) Theoretical studies on the conformation of aldopyranoses. Carbohydr Res 22(2):413–424CrossRefGoogle Scholar
  31. 31.
  32. 32.
    MD Simulations and Force Field development. Available from: http://www.qchem.unn.ru/md-simulations-and-force-field-development/
  33. 33.
    Okuyama K et al. (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30(19):5849–5855CrossRefGoogle Scholar
  34. 34.
    Ogawa K, Yui T, Okuyama K (2004) Three D structures of chitosan. Int J Biol Macromol 34(1–2):1–8CrossRefGoogle Scholar
  35. 35.
    Yui T et al. (1994) Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27(26):7601–7605CrossRefGoogle Scholar
  36. 36.
    Páll S, et al (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S and Laure E (ed) Solving software challenges for Exascale: International Conference on exascale applications and software, EASC 2014, Stockholm, Sweden, April 2–3, 2014, Revised Selected Papers. Springer , Cham, p 3–27Google Scholar
  37. 37.
    Bonomi M et al. (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180(10):1961–1972CrossRefGoogle Scholar
  38. 38.
    Berendsen HJC (1991) Transport properties computed by linear response through weak coupling to a bath. In: Meyer M, Pontikis V (eds) Computer simulation in materials science: interatomic potentials, simulation techniques and applications. Springer, Dordrecht, pp. 139–155CrossRefGoogle Scholar
  39. 39.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRefGoogle Scholar
  40. 40.
    Essmann U et al. (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593CrossRefGoogle Scholar
  41. 41.
    Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14(2):148–158CrossRefGoogle Scholar
  42. 42.
    Hess B et al. (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472CrossRefGoogle Scholar
  43. 43.
    Stenutz R et al. (2002) Hydroxymethyl group conformation in saccharides: structural dependencies of 2JHH, 3JHH, and 1JCH spin−spin coupling constants. J Org Chem 67(3):949–958CrossRefGoogle Scholar
  44. 44.
    Tafazzoli M, Ghiasi M (2007) New Karplus equations for 2JHH, 3JHH, 2JCH, 3JCH, 3JCOCH, 3JCSCH, and 3JCCCH in some aldohexopyranoside derivatives as determined using NMR spectroscopy and density functional theory calculations. Carbohydr Res 342(14):2086–2096CrossRefGoogle Scholar
  45. 45.
    Mobli M, Almond A (2007) N-acetylated amino sugars: the dependence of NMR 3J(HNH2)-couplings on conformation, dynamics and solvent. Org Biomol Chem 5(14):2243–2251CrossRefGoogle Scholar
  46. 46.
    Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519CrossRefGoogle Scholar
  47. 47.
    Roslund MU et al. (2008) Complete assignments of the (1)H and (13)C chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr Res 343(1):101–112CrossRefGoogle Scholar
  48. 48.
    Blundell CD et al. (2009) Investigating the molecular basis for the virulence of Escherichia coli K5 by nuclear magnetic resonance analysis of the capsule polysaccharide. J Mol Microbiol Biotechnol 17(2):71–82CrossRefGoogle Scholar
  49. 49.
    Yoshihiro Nishida HO, Meguro H (1984) 1H-NMR studies of (6r)- and (6s)-deuterated D-hexoses: assignment of the preferred rotamers about C5C6 bond of D-glucose and D-galactose derivatives in solutions. Tetrahedron Lett 25(15):1575–1578CrossRefGoogle Scholar
  50. 50.
    Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97(6):1354–1358CrossRefGoogle Scholar
  51. 51.
    Sattelle BM, Almond A (2011) Is N-acetyl-d-glucosamine a rigid 4C1 chair? Glycobiology 21(12):1651–1662CrossRefGoogle Scholar
  52. 52.
    Yui T et al. (2007) Exhaustive crystal structure search and crystal modeling of beta-chitin. Int J Biol Macromol 40(4):336–344CrossRefGoogle Scholar
  53. 53.
    Gardner KH, Blackwell J (1975) Refinement of the structure of β-chitin. Biopolymers 14(8):1581–1595CrossRefGoogle Scholar
  54. 54.
    Paavilainen S, Rog T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115(14):3747–3755CrossRefGoogle Scholar
  55. 55.
    Alvarenga ESD (2011) Characterization and properties of chitosan, in biotechnology of biopolymers. In: Elnashar M (ed) InTech: Janeza Trdine 9. 51000 Rijeka, Croatia, pp. 91–108Google Scholar
  56. 56.
    Mao S et al. (2004) The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm 281(1–2):45–54CrossRefGoogle Scholar
  57. 57.
    Wang QZ et al. (2006) Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr Polym 65(2):194–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.N.I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Research institute of chemistry of University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations