Conceptual DFT analysis of the regioselectivity of 1,3-dipolar cycloadditions: nitrones as a case of study

  • Ramón Alain Miranda-Quintana
  • Marco Martínez González
  • David Hernández-Castillo
  • Luis A. Montero-Cabrera
  • Paul W. Ayers
  • Christophe MorellEmail author
Original Paper
Part of the following topical collections:
  1. Festschrift in Honor of Henry Chermette


The regioselectivity of the 1,3-dipolar cycloaddition of a model nitrone with a set of dipolarophiles, presenting diverse electronic effects, is analyzed using conceptual density functional theory (DFT) methods. We deviate from standard approaches based on frontier molecular orbitals and formulations of the local hard/soft acid/base principle and use instead the dual descriptor. A detailed analysis is carried out to determine the influence of the way to calculate the dual descriptor, the computational procedure, basis set and choice of method to condensate the values of this descriptor. We show that the qualitative regioselectivity predictions depend on the choice of “computational conditions”, something that indicates the danger of using black-box computational set-ups in conceptual DFT studies.


Conceptual DFT Dual Descriptor Dipolar Cyclo-Addition 



RAMQ, MMG, DHG and LAMC thank the support of the “Programa Nacional de Ciencias Básicas” of Cuba. RAMQ acknowledges support from Foreign Affairs, Trade and Development Canada in the form of an Emerging Leaders in the Americas Program scholarship. PWA acknowledges support from the Natural Sciences and Engineering Research Council and Compute Canada. Discussions with Darío González Abradelo are gratefully acknowledged. Finally, we want to acknowledge the impact and inspiration provided by Prof. Henry Chermette, both by means of his direct mentorship, and through his seminal contributions to conceptual DFT.

Supplementary material

894_2017_3382_MOESM1_ESM.docx (3.5 mb)
ESM 1 (DOCX 3557 kb)


  1. 1.
    Houk KN, Sims J, Watts CR, Luskus LJ (1973) The origin of reactivity, regioselectivity, and periselectivity in 1,3-dipolar cycloadditios. J Am Chem Soc 95(22):7301–7315Google Scholar
  2. 2.
    Houk KN, Sims J, Sims RE, Duke J, Strozier RW, George JK (1973) Frontier molecular orbitals of 1,3 dipoles and dipolarophiles. J Am Chem Soc 95(22):7287–7301CrossRefGoogle Scholar
  3. 3.
    Ess DH, Jones GO, Houk KN (2006) Conceptual, qualitative, and quantitative theories of 1,3-dipolar and Diels-Alder cycloadditions used in synthesis. Adv Synth Catal 348:2337–2361CrossRefGoogle Scholar
  4. 4.
    Ess DH, Houk KN (2007) Distorion-interaction energy control of 1,3-dipolar cycloaddition reactivity. J Am Chem Soc 129(35):10646–10647CrossRefGoogle Scholar
  5. 5.
    Ess DH, Houk KN (2008) Theory of 1,3-dipolar cycloadditions: distortion/interaction and forntier molecular orbital models. J Am Chem Soc 130(31):10187–10198CrossRefGoogle Scholar
  6. 6.
    Schoenebeck F, Ess DH, Jones GO, Houk KN (2009) Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study. J Am Chem Soc 131(23):8121–8133CrossRefGoogle Scholar
  7. 7.
    Xu L, Doubleday CE, Houk KN (2010) Dynamics of 1,3-dipolar cycloadditions: energy partitioning of reactants and quantitation of synchronicity. J Am Chem Soc 132(9):3029–3037CrossRefGoogle Scholar
  8. 8.
    Dewar MJS (1952) A molecular orbital theory of organic chemistry. I. General principles. J Am Chem Soc 74:3341–3345CrossRefGoogle Scholar
  9. 9.
    Dewar MJS (1952) A molecular orbital theory of organic chemistry. II. The structure of mesomeric systems. J Am Chem Soc 74:3345–3350CrossRefGoogle Scholar
  10. 10.
    Dewar MJS (1952) A molecular orbital theory of organic chemistry. III. Charge displacements and electromeric substitutions. J Am Chem Soc 74:3350–3353CrossRefGoogle Scholar
  11. 11.
    Dewar MJS (1952) A molecular orbital theory of organic chemistry. IV. Free radicals. J Am Chem Soc 74:3353–3354CrossRefGoogle Scholar
  12. 12.
    Dewar MJS (1952) A molecular orbital theory of organic chemistry. V. Theories of reactivity and the relationship between them. J Am Chem Soc 74:3355–3356CrossRefGoogle Scholar
  13. 13.
    Dewar MJS (1952) A molecular orbital theory of organic chemistry. VI. Aromatic substitution and addition. J Am Chem Soc 74:3357–3363CrossRefGoogle Scholar
  14. 14.
    Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20(4):722–725CrossRefGoogle Scholar
  15. 15.
    Salem L (1968) Intermolecular orbital theory of the interaction between conjugated systems. II. Thermal and photochemical cycloadditions. J Am Chem Soc 90:553–566CrossRefGoogle Scholar
  16. 16.
    Salem L (1968) Intermolecular orbital theory of the interaction between conjugated systems. I. General theory. J Am Chem Soc 90:543–552CrossRefGoogle Scholar
  17. 17.
    Dewar MJS (1969) Molecular orbital theory of organic chemistry. McGraw-Hill, New York Google Scholar
  18. 18.
    Salem L (1972) The molecular orbital theory of conjugated systems. Benjamin, Reading Google Scholar
  19. 19.
    Guner V, Khuong KS, Leach AG, Lee PS, Bartberger MD, Houk KN (2003) A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: the performance of ab initio, density functional, CASSCF, CASPT2, and CBS-QB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries. J Phys Chem A 107(51):11445–11459. doi: 10.1021/jp035501w CrossRefGoogle Scholar
  20. 20.
    Le TN, Nguyen LT, Chandra AK, De Proft F, Geerlings P, Nguyen MT (1999) 1,3-dipolar cycloadditions of thionitroso compounds (R-N:S): a density functional theory study. J Chem Soc Perkin Trans 2:1249–1255CrossRefGoogle Scholar
  21. 21.
    Grimme S, Muck-Lichtenfield C, Wurthwein EU (2006) Consistent theoretical description of 1,3-dipolar cycloaddition reactions. J Phys Chem A 110:2583–2586CrossRefGoogle Scholar
  22. 22.
    Saito T, Nishihara S, Kataoka Y, Nakanishi Y, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2010) Multireference character of 1,3-dipolar cycloaddition of ozone with ethylene and acrylonitrile. J Phys Chem A 114:12116–12123CrossRefGoogle Scholar
  23. 23.
    Padwa A, Fisera L, Koehler KF, Rodriguez A, GSK W (1984) Regioselectivity associated with the 1,3-dipolar cycloaddition of nitrones with electron-deficient dipolarophiles. J Am Chem Soc 49:276–281Google Scholar
  24. 24.
    Confalone PN, Huie EM (1988) The [3+2] nitrone-olefin cycloaddition reaction. In: Organic reactions, vol 36. pp 1–67Google Scholar
  25. 25.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University press, New York Google Scholar
  26. 26.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873CrossRefGoogle Scholar
  27. 27.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154CrossRefGoogle Scholar
  28. 28.
    Parr RG (2000) Density-functional theory and chemistry. Condens Matter Theor 15:297–302Google Scholar
  29. 29.
    Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018CrossRefGoogle Scholar
  30. 30.
    Ayers PW, Parr RG (2001) Variational principles for describing chemical reactions. Reactivity indices based on the external potential. J Am Chem Soc 123:2007–2017CrossRefGoogle Scholar
  31. 31.
    Miranda-Quintana RA, Ayers PW (2016) Fractional electron number, temperature, and perturbations in chemical reactions. PCCP 18:15070–15080CrossRefGoogle Scholar
  32. 32.
    Miranda-Quintana RA (2016) Density functional theory for chemical reactivity. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic, WaretownGoogle Scholar
  33. 33.
    Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764Google Scholar
  34. 34.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534CrossRefGoogle Scholar
  35. 35.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  36. 36.
    Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89(8):1827–1836CrossRefGoogle Scholar
  37. 37.
    Pearson RG (1968) Hard and soft acids and bases (HSAB). II. Underlying theories. J Chem Edu 45(10):643–648Google Scholar
  38. 38.
    Pearson RG (1968) Hard and soft acids and bases (HSAB). I. Fundamental principles. J Chem Edu 45(9):581–587Google Scholar
  39. 39.
    Chandra AK, Uchimaru T, Nguyen MT (1999) Regiochemistry of 1,3-dipolar cycloadditions between azides and substituted ethylenes: a theoretical study. J Chem Soc Perkin Trans 2:2117–2121CrossRefGoogle Scholar
  40. 40.
    Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975CrossRefGoogle Scholar
  41. 41.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  42. 42.
    Liu SB (2009) Electrophilicity. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. Taylor and Francis, Boca Raton, p 179Google Scholar
  43. 43.
    Chattaraj PK, Giri S (2009) Electrophilicity index within a conceptual DFT framework. Ann Rep Prog Chem C 105:13–39CrossRefGoogle Scholar
  44. 44.
    Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212CrossRefGoogle Scholar
  45. 45.
    Ayers PW, Morell C, De Proft F, Geerlings P (2007) Understanding the Woodward-Hoffmann rules using changes in the electron density. Chem Eur J 13:8240–8247CrossRefGoogle Scholar
  46. 46.
    Cardenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) Chemical reactivity descriptors for Ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J Phys Chem A 113:8660–8667. doi: 10.1021/jp902792n
  47. 47.
    Morell C, Ayers PW, Grand A, Gutierrez-Oliva S, Toro-Labbé A (2008) Rationalization of Diels-Alder reactions through the use of the dual reactivity descriptor Delta f(r). PCCP 10:7239–7246. doi: 10.1039/b810343g CrossRefGoogle Scholar
  48. 48.
    Beno BR, Houk KN, Singleton DA (1996) Synchronous or asynchronous? An "experimental" transition state from a direct comparison of experimental and theoretical kinetic isotope effects for a Diels-Alder reaction. J Am Chem Soc 118:9984–9985CrossRefGoogle Scholar
  49. 49.
    Valentin CD, Freccero M, Gandolfi R, Rastelli A (2000) Concerted vs stepwise mechanism in 1,3-dipolar cycloaddition of nitrone to ethene, cyclobutadiene, and benzocyclobutadiene. A computational study. J Org Chem 65:6112–6120CrossRefGoogle Scholar
  50. 50.
    Parr RG, Yang WT (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  51. 51.
    Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863CrossRefGoogle Scholar
  52. 52.
    Ayers PW, Levy M (2000) Perspective on "density functional approach to the frontier-electron theory of chemical reactivity" by Parr RG, Yang W (1984). Theor Chem Accounts 103:353–360CrossRefGoogle Scholar
  53. 53.
    Miranda-Quintana RA, Ayers PW (2016) Systematic treatment of spin-reactivity indicators in conceptual density functional theory Theor Chem Accounts 135:239CrossRefGoogle Scholar
  54. 54.
    Miranda-Quintana RA, Ayers PW (2016) Grand-canonical interpolation models. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic, WaretownGoogle Scholar
  55. 55.
    Galvan M, Gazquez JL, Vela A (1986) Fukui function: spindensity and chemical reactivity J Chem Phys 85:2337–2338CrossRefGoogle Scholar
  56. 56.
    Becker PJ, Bec E (1996) A simple method for predicting electron density in complex flexible molecules. A tribute to F.L. Hirshfeld. Chem Phys Lett 260(3–4):319–325CrossRefGoogle Scholar
  57. 57.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Act 44:129–138CrossRefGoogle Scholar
  58. 58.
    Ayers PW (2000) Atoms in molecules, an axiomatic approach. I. maximum Transferability. J Chem Phys 113:10886–10898CrossRefGoogle Scholar
  59. 59.
    Heidar-Zadeh F, Ayers PW, Bultinck P (2014) Deriving the Hirshfeld partitioning using distance metrics. J Chem Phys 141:094103CrossRefGoogle Scholar
  60. 60.
    Heidar-Zadeh F, Ayers PW (2015) How pervasive is the Hirshfeld partitioning? J Chem Phys 142(4):044107. doi: 10.1063/1.4905123 CrossRefGoogle Scholar
  61. 61.
    Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:144111CrossRefGoogle Scholar
  62. 62.
    Bultinck P, Cooper DL, Van Neck D (2009) Comparison of the Hirshfeld-I and iterated stockholder atoms in molecules schemes. PCCP 11:3424–3429. doi: 10.1039/b821734c CrossRefGoogle Scholar
  63. 63.
    Vanpoucke DEP, Bultinck P, Van Driessche I (2013) Extending Hirshfeld-I to bulk and periodic materials. J Comput Chem 34(5):405–417. doi: 10.1002/jcc.23088 CrossRefGoogle Scholar
  64. 64.
    Vanfleteren D, Van Neck D, Bultinck P, Ayers PW, Waroquier M (2012) Stockholder projector analysis: a Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors. J Chem Phys 136:014107. doi: 10.1063/1.3673321 CrossRefGoogle Scholar
  65. 65.
    Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2012) The conformational sensitivity of iterative stockholder partitioning schemes. Chem Phys Lett 545:138–143. doi: 10.1016/j.cplett.2012.07.028 CrossRefGoogle Scholar
  66. 66.
    Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2013) Hirshfeld-E partitioning: AIM charges with an improved trade-off between robustness and accurate electrostatics. J Chem Theory Comp 9:2221–2225CrossRefGoogle Scholar
  67. 67.
    Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) A proposal for an extended dual descriptor: a possible solution when frontier molecular orbital theory fails. PCCP 15:14465–14475CrossRefGoogle Scholar
  68. 68.
    De Proft F, Forquet V, Ourri B, Chermette H, Geerlings P, Morell C (2015) Investigation of electron density changes at the onset of a chemical reaction using the state-specific dual descriptor from conceptual density functional theory. PCCP 17:9359–9368CrossRefGoogle Scholar
  69. 69.
    Tognetti V, Morell C, Joubert L (2015) Quantifying electro/nucleophilicity by partitioning the dual descriptor. J Comput Chem 36:649–659CrossRefGoogle Scholar
  70. 70.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  71. 71.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  72. 72.
    Perdew JP, Parr RG, Levy M, Balduz Jr JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694CrossRefGoogle Scholar
  73. 73.
    Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303CrossRefGoogle Scholar
  74. 74.
    Ayers PW (2007) On the electronegativity nonlocality paradox. Theor Chem Accounts 118:371–381CrossRefGoogle Scholar
  75. 75.
    Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175CrossRefGoogle Scholar
  76. 76.
    Bochicchio RC, Rial D (2012) Note: energy convexity and density matrices in molecular systems. J Chem Phys 137:226101CrossRefGoogle Scholar
  77. 77.
    Bochicchio RC, Miranda-Quintana RA, Rial D (2013) Communication: reduced density matrices in molecular systems: Grand-canonical electron states. J Chem Phys 139(19). doi: 10.1063/1.4832495
  78. 78.
    Yang WT, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  79. 79.
    Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127:034102CrossRefGoogle Scholar
  80. 80.
    Miranda-Quintana RA (2016) Condensed-to-atoms hardness kernel from the response of molecular fragment approach. Chem Phys Lett 658:328–330CrossRefGoogle Scholar
  81. 81.
    Miranda-Quintana RA, Ayers PW (2016) Charge transfer and chemical potential in 1,3-dipolar cycloadditions. Theor Chem Accounts 135:172CrossRefGoogle Scholar
  82. 82.
    Miranda-Quintana RA (2016) Comments on “on the non-integer number of particles in molecular system domains: treatment and description”. Theor Chem Acc 135:189Google Scholar
  83. 83.
    Guégan F, Tognetti V, Joubert L, Chermette H, Luneau D, Morell C (2016) Towards the first theoretical scale of the trans effect in octahedral complexes. PCCP 18:982–990CrossRefGoogle Scholar
  84. 84.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Iszmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, WallingfordGoogle Scholar
  85. 85.
    Verstraelen T, Tecmer P, Heidar Zadeh F, Boguslawski K, Chan M, Zhao Y, Kim TD, Vandenbrande S, Yang XD, Gonzalez-Espinoza CE, Fias S, Limacher PA, Berrocal D, Malek A, Ayers PW (2015) HORTON 2.0.1.
  86. 86.
    Tozer DJ, De Proft F (2005) Computation of the hardness and the problem of negative electron affinities in density functional theory. J Phys Chem A 109(39):8923–8929CrossRefGoogle Scholar
  87. 87.
    De Proft F, Sablon N, Tozer DJ, Geerlings P (2007) Calculation of negative electron affinity and aqueous anion hardness using Kohn-sham HOMO and LUMO energies. Faraday Discuss 135:151–159CrossRefGoogle Scholar
  88. 88.
    Cardenas C, Ayers PW, De Proft F, Tozer DJ, Geerlings P (2011) Should negative electron affinities be used for evaluating the chemical hardness. PCCP 13:2285–2293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ramón Alain Miranda-Quintana
    • 1
    • 2
  • Marco Martínez González
    • 1
  • David Hernández-Castillo
    • 1
  • Luis A. Montero-Cabrera
    • 1
  • Paul W. Ayers
    • 2
  • Christophe Morell
    • 3
    Email author return OK on get
  1. 1.Laboratory of Computational and Theoretical Chemistry, Faculty of ChemistryUniversity of HavanaHavanaCuba
  2. 2.Department of Chemistry & Chemical BiologyMcMaster UniversityHamiltonCanada
  3. 3.Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280VilleurbanneFrance

Personalised recommendations