Advertisement

Development of an AMBER-compatible transferable force field for poly(ethylene glycol) ethers (glymes)

  • Nathalia S. V. Barbosa
  • Yong Zhang
  • Eduardo R. A. Lima
  • Frederico W. TavaresEmail author
  • Edward J. MaginnEmail author
Original Paper

Abstract

An all-atom force field consistent with the general AMBER force field (GAFF) format for poly(ethylene glycol) dimethyl ether (diglyme or G2) was developed by fitting to experimental liquid densities and dielectric constants. Not surprisingly, the new force field gives excellent agreement with experimental liquid phase densities and dielectric constants over a wide temperature range. Other dynamic and thermodynamic properties of liquid G2 such as its self-diffusion coefficient, shear viscosity, and vaporization enthalpy were also calculated and compared to experimental data. For all of the properties studied, the performance of the proposed new force field is better than that of the standard GAFF force field. The force field parameters were transferred to model two other poly(ethylene glycol) ethers: monoglyme (G1) and tetraglyme (G4). The predictive ability of the modified force field for G1 and G4 was significantly better than that of the original GAFF force field. The proposed force field provides an alternative option for the simulation of mixtures containing glymes using GAFF-compatible force fields, particularly for electrochemical applications. The accuracy of a previously published force field based on the OPLS-AA format and the accuracies of two modified versions of that force field were also examined for G1, G2, and G4. It was found that the original OPLS-AA force field is superior to the modified versions of it, and that it has a similar accuracy to the proposed new GAFF-compatible force field.

Graphical abstract

Transferability of an AMBER-compatible force field parameterized for G2 to other glymes

Keywords

Glymes Transferability General AMBER force field Dielectric constant 

Notes

Acknowledgments

N.S.V. Barbosa, E.R.A. Lima, and F.W. Tavares are grateful to several Brazilian agencies—the National Counsel of Technological and Scientific Development (CNPq) and the Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (FAPERJ)—for financial support. Computational resources were provided by the Center for Research Computing (CRC) at the University of Notre Dame. Y. Zhang and E. Maginn are supported by the U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research under contract no. DE-AC02-06CH11357.

Supplementary material

894_2017_3355_MOESM1_ESM.docx (179 kb)
ESM 1 (DOCX 179 kb)

References

  1. 1.
    Haynes WM (ed) (2015) CRC handbook of chemistry and physics, 96th edn. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Tang S, Zhao H (2014) Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry. RSC Adv 4:11251–11287. doi: 10.1039/c3ra47191h CrossRefGoogle Scholar
  3. 3.
    Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115:18384–18394. doi: 10.1021/jp206881t CrossRefGoogle Scholar
  4. 4.
    Frech R, Huang W (1995) Conformational changes in diethylene glycol dimethyl ether and poly(ethylene oxide) induced by lithium ion complexation. Macromolecules 28:1246–1251. doi: 10.1021/ma00108a063 CrossRefGoogle Scholar
  5. 5.
    Flick EW (ed)(1998) Glycol ethers. In: Industrial solvents handbook, 5th edn. William Andrew/Noyes, Westwood, pp 496–624Google Scholar
  6. 6.
    Saito S, Watanabe H, Ueno K, Mandai T, Seki S, Tsuzuki S, Kameda Y, Dokko K, Watanabe M, Umebayashi Y (2016) Li+ local structure in hydrofluoroether diluted Li-glyme solvate ionic liquid. J Phys Chem B 120:3378–3387. doi: 10.1021/acs.jpcb.5b12354
  7. 7.
    Ueno K, Murai J, Moon H, Dokko K, Watanabe M (2017) A design approach to lithium-ion battery electrolyte based on diluted solvate ionic liquids. J Electrochem Soc 164:A6088–A6094. doi: 10.1149/2.0121701jes CrossRefGoogle Scholar
  8. 8.
    Shimizu K, Freitas AA, Atkin R, Warr GG, FitzGerald PA, Doi H, Saito S, Ueno K, Umebayashi Y, Watanabe M, Canongia Lopes JL (2015) Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. Phys Chem Chem Phys 17:22321–22335. doi: 10.1039/C5CP03414K CrossRefGoogle Scholar
  9. 9.
    Tsuzuki S, Shinoda W, Matsugami M, Umebayashi Y, Ueno K, Mandai T, Seki S, Dokko K, Watanabe M (2015) Structures of [Li(glyme)]+ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Phys Chem Chem Phys 17:126–129. doi: 10.1039/C4CP04718D CrossRefGoogle Scholar
  10. 10.
    Mahurin SM, Mamontov E, Thompson MW, Zhang P, Turner CH, Cummings PT, Dai S (2016) Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential. Appl Phys Lett 109:143111. doi: 10.1063/1.4964130 CrossRefGoogle Scholar
  11. 11.
    Feng G, Li S, Zhao W, Cummings PT (2015) Microstructure of room temperature ionic liquids at stepped graphite electrodes. AICHE J 61:3022–3028. doi: 10.1002/aic.14927 CrossRefGoogle Scholar
  12. 12.
    Smith GD, Jaffe RL, Yoon DY (1993) A force field for simulations of 1,2-dimethoxyethane and poly(oxyethylene) based upon ab initio electronic structure calculations on model molecules. J Phys Chem 97:12752–12759. doi: 10.1021/j100151a021
  13. 13.
    Jaffe RL, Smith GD, Yoon DY (1993) Conformations of 1,2-dimethoxyethane from ab initio electronic structure calculations. J Phys Chem 97:12745–12751. doi: 10.1021/j100151a020
  14. 14.
    Sorensen RA, Liau WB, Kesner L, Boyd RH (1988) Prediction of polymer crystal structures and properties: polyethylene and poly(oxymethylene). Macromolecules 21:200–208. doi: 10.1021/ma00179a039 CrossRefGoogle Scholar
  15. 15.
    MacKerell AD, Bashford D, Bellott M, et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi: 10.1021/jp973084f CrossRefGoogle Scholar
  16. 16.
    Bedrov D, Borodin O, Smith GD (1998) Molecular dynamics simulations of 1,2-dimethoxyethane/water solutions. 1. Conformational and structural properties. J Phys Chem B 102:5683–5690. doi: 10.1021/jp981009e
  17. 17.
    Bedrov D, Borodin O, Smith GD (1998) Molecular dynamics simulation of 1,2-dimethoxyethane/water solutions. 2. Dynamical properties. J Phys Chem B 102:9565–9570. doi: 10.1021/jp982161j
  18. 18.
    Bedrov D, Pekny M, Smith GD (1998) Quantum-chemistry-based force field for 1,2-dimethoxyethane and poly(ethylene oxide) in aqueous solution. J Phys Chem B 102:996–1001. doi: 10.1021/jp972545u CrossRefGoogle Scholar
  19. 19.
    Bedrov D, Smith GD (1999) Molecular dynamics simulations of 1,2-dimethoxyethane in aqueous solution: influence of the water potential. J Phys Chem B 103:3791–3796. doi: 10.1021/jp984613y
  20. 20.
    Smith GD, Borodin O, Bedrov D (2002) A revised quantum chemistry-based potential for poly(ethylene oxide) and its oligomers in aqueous solution. J Comput Chem 23:1480–1488. doi: 10.1002/jcc.10166 CrossRefGoogle Scholar
  21. 21.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OLPS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. doi: 10.1021/ja9621760 CrossRefGoogle Scholar
  22. 22.
    Anderson PM, Wilson MR (2005) Developing a force field for simulation of poly(ethylene oxide) based upon ab initio calculations of 1,2-dimethoxyethane. Mol Phys 103:89–97. doi: 10.1080/00268970412331293811
  23. 23.
    Smith GD, Jaffe RL, Yoon DY (1995) Conformations of 1,2-dimethoxyethane in the gas and liquid phases from molecular dynamics simulations. J Am Chem Soc 117:530–531. doi: 10.1021/ja00106a061
  24. 24.
    Goutev N, Ohno K, Matsuura H (2000) Raman spectroscopic study on the conformation of 1,2-dimethoxyethane in the liquid phase and in aqueous solutions. J Phys Chem A 104:9226–9232. doi: 10.1021/jp001340+
  25. 25.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. doi: 10.1021/ja00124a002 CrossRefGoogle Scholar
  26. 26.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. doi: 10.1002/jcc.20035 CrossRefGoogle Scholar
  27. 27.
    Dong H, Hyun J-K, Durham C, Wheeler RA (2001) Molecular dynamics simulations and structural comparisons of amorphous poly(ethylene oxide) and poly(ethylenimine) models. Polymer 42:7809–7817. doi: 10.1016/S0032-3861(01)00234-8 CrossRefGoogle Scholar
  28. 28.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. doi: 10.1021/j100142a004 CrossRefGoogle Scholar
  29. 29.
    Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119:5882–5895. doi: 10.1021/acs.jpcb.5b00689 CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Maginn EJ (2012) A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids. J Phys Chem B 116:10036–10048. doi: 10.1021/jp3037999 CrossRefGoogle Scholar
  31. 31.
    Cordeiro RM, Zschunke F, Müller-Plathe F (2010) Mesoscale molecular dynamics simulations of the force between surfaces with grafted poly(ethylene oxide) chains derived from atomistic simulations. Macromolecules 43:1583–1591. doi: 10.1021/ma902060k CrossRefGoogle Scholar
  32. 32.
    Stubbs JM, Potoff JJ, Siepmann JI (2004) Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem B 108:17596–17605. doi: 10.1021/jp049459w CrossRefGoogle Scholar
  33. 33.
    Fischer J, Paschek D, Geiger A, Sadowski G (2008) Modeling of aqueous poly(oxyethylene) solutions. 2. Mesoscale simulations. J Phys Chem B 112:13561–13571. doi: 10.1021/jp805770q CrossRefGoogle Scholar
  34. 34.
    Fischer J, Paschek D, Geiger A, Sadowski G (2008) Modeling of aqueous poly (oxyethylene) solutions: 1. Atomistic simulations. J Phys Chem B 112:2388–2398. doi: 10.1021/jp0765345 CrossRefGoogle Scholar
  35. 35.
    Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164. doi: 10.1002/jcc.21224 CrossRefGoogle Scholar
  36. 36.
    Martínez JM, Martínez L (2003) Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem 24:819–825. doi: 10.1002/jcc.10216 CrossRefGoogle Scholar
  37. 37.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. doi: 10.1103/PhysRevA.31.1695 CrossRefGoogle Scholar
  38. 38.
    Shinoda W, Shiga M, Mikami M (2004) Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B 69:134103. doi: 10.1103/PhysRevB.69.134103 CrossRefGoogle Scholar
  39. 39.
    Hockney RW, Eastwood JW (1988) Computer simulation using particles. Taylor & Francis, New YorkGoogle Scholar
  40. 40.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. doi: 10.1006/jcph.1995.1039 CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, revision a.1. Gaussian, Inc., WallingfordGoogle Scholar
  42. 42.
    Neumann M (1983) Dipole moment fluctuation formulas in computer simulations of polar systems. Mol Phys 50:841–858. doi: 10.1080/00268978300102721 CrossRefGoogle Scholar
  43. 43.
    Holian BL, Evans DJ (1983) Shear viscosities away from the melting line: a comparison of equilibrium and nonequilibrium molecular dynamics. J Chem Phys 78:5147–5150. doi: 10.1063/1.445384 CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Otani A, Maginn EJ (2015) Reliable viscosity calculation from equilibrium molecular dynamics simulations: a time decomposition method. J Chem Theory Comput 11:3537–3546. doi: 10.1021/acs.jctc.5b00351 CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Xue L, Khabaz F, Doerfler R, Quitevis EL, Khare R, Maginn EJ (2015) Molecular topology and local dynamics govern the viscosity of imidazolium-based ionic liquids. J Phys Chem B 119:14934–14944. doi: 10.1021/acs.jpcb.5b08245 CrossRefGoogle Scholar
  46. 46.
    Otani A, Zhang Y, Matsuki T, Kamio E, Matsuyama H, Maginn EJ (2016) Molecular design of high CO2 reactivity and low viscosity ionic liquids for CO2 separative facilitated transport membranes. Ind Eng Chem Res 55:2821–2830. doi: 10.1021/acs.iecr.6b00188
  47. 47.
    Kodama D, Kanakubo M, Kokubo M, Hashimoto S, Nanjo H, Kato M (2011) Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib 302:103–108. doi: 10.1016/j.fluid.2010.08.014 CrossRefGoogle Scholar
  48. 48.
    Conesa A, Shen S, Coronas A (1998) Liquid densities, kinematic viscosities, and heat capacities of some ethylene glycol dimethyl ethers at temperatures from 283.15 to 423.15 K. Int J Thermophys 19:1343–1358. doi: 10.1023/A:1021927417610 CrossRefGoogle Scholar
  49. 49.
    Lago A, Rivas MA, Legido J, Iglesias TP (2009) Study of static permittivity and density of the systems {(n-nonane + monoglyme or diglyme)} at various temperatures. J Chem Thermodyn 41:257–264. doi: 10.1016/j.jct.2008.09.006
  50. 50.
    Hayamizu K, Price WS (2004) A new type of sample tube for reducing convection effects in PGSE-NMR measurements of self-diffusion coefficients of liquid samples. J Magn Reson 167:328–333. doi: 10.1016/j.jmr.2004.01.006 CrossRefGoogle Scholar
  51. 51.
    Pereira SM, Iglesias TP, Legido JL, Rivas MA, Real JN (2001) Relative permittivity increments for {xCH3OH + (1−x) CH3OCH2(CH2OCH2)3CH2OCH3} from T = 283.15 K to T = 323.15 K. J Chem Thermodyn 33:433–440. doi: 10.1006/jcht.2000.0746
  52. 52.
    Hayamizu K, Akiba E, Bando T, Aihara Y (2002) 1H, 7Li, and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n = 3−50) doped with LiN(SO2CF3)2. J Chem Phys 117:5929–5939. doi: 10.1063/1.1501279
  53. 53.
    Ku H-C, Tu C-H (2000) Densities and viscosities of seven glycol ethers from 288.15 K to 343.15 K. J Chem Eng Data 45:391–394. doi: 10.1021/je990281u CrossRefGoogle Scholar
  54. 54.
    Nichols G, Orf J, Reiter SM, Chickos J, Gokel GW (2000) The vaporization enthalpies of some crown and polyethers by correlation gas chromatography. Thermochim Acta 346:15–28. doi: 10.1016/S0040-6031(99)00405-0

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nathalia S. V. Barbosa
    • 1
  • Yong Zhang
    • 2
    • 3
  • Eduardo R. A. Lima
    • 1
  • Frederico W. Tavares
    • 4
    • 5
    Email author
  • Edward J. Maginn
    • 2
    • 3
    Email author
  1. 1.Programa de Pós-graduação em Engenharia QuímicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameUSA
  3. 3.Joint Center for Energy Storage ResearchUniversity of Notre DameNotre DameUSA
  4. 4.Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Programa de Engenharia Química, COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations