Assessing the dispersive and electrostatic components of the selenium–aromatic interaction energy by DFT

  • Milan Senćanski
  • Ivana Djordjević
  • Sonja Grubišić
Original Paper
  • 122 Downloads

Abstract

Selenium has been increasingly recognized as an important element in biological systems, which participates in numerous biochemical processes in organisms, notably in enzyme reactions. Selenium can substitute sulfur of cysteine and methionine to form their selenium analogues, selenocysteine (Sec) and selenomethionine (SeM). The nature of amino acid pockets in proteins is dependent on their composition and thus different non-covalent forces determine the interactions between selenium of Sec or SeM and other functional groups, resulting in specific biophysical behavior. The discrimination of selenium toward sulfur has been reported. In order to elucidate the difference between the nature of S-π and Se-π interactions, we performed extensive DFT calculations of dispersive and electrostatic contributions of Se-π interactions in substituted benzenes/hydrogen selenide (H2Se) complexes. The results are compared with our earlier reported S-π calculations, as well as with available experimental data. Our results show a larger contribution of dispersive interactions in Se-π systems than in S-π ones, which mainly originate from the attraction between Se and substituent groups. We found that selenium exhibits a strong interaction with aromatic systems and may thus play a significant role in stabilizing protein folds and protein–inhibitor complexes. Our findings can also provide molecular insights for understanding enzymatic specificity discrimination between single selenium versus a sulfur atom, notwithstanding their very similar chemical properties.

Keywords

DFT calculations Electrostatic and dispersive interactions calculations Se-aromatic interactions TD-DFT calculations 

Supplementary material

894_2017_3330_MOESM1_ESM.pdf (335 kb)
ESM 1(PDF 335 kb)

References

  1. 1.
    Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN (2016) Selenium— its molecular biology and role in human health. Springer, BerlinGoogle Scholar
  2. 2.
    Brigelius-Flohe R, Sies H (2016) Diversity of selenium functions in health and disease, oxidative stress and disease, no. 38. CRC, Boca RatonGoogle Scholar
  3. 3.
    Arnér ESJ (2010) Selenoproteins — what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316:1296–1303. doi:10.1016/j.yexcr.2010.02.032 CrossRefGoogle Scholar
  4. 4.
    Cupp-Sutton KA, Ashby MT (2016) Biological chemistry of hydrogen selenide. Antioxidants 5:42–60. doi:10.3390/antiox5040042 CrossRefGoogle Scholar
  5. 5.
    Johansson L, Gafvelin G, Arnér ESJ (2005) Selenocysteine in proteins–properties and biotechnological use. Biochim Biophys Acta 1726:1–13. doi:10.1016/j.bbagen.2005.05.010 CrossRefGoogle Scholar
  6. 6.
    Johnson DW, Hof F (2016) Aromatic interactions: frontiers in knowledge and application, monographs in supramolecular chemistry, no. 20. The Royal Society of Chemistry, UKCrossRefGoogle Scholar
  7. 7.
    Waters ML (2004) Aromatic interactions in peptides: impact on structure and function. Biopolymers 76:435–445. doi:10.1002/bip.20144
  8. 8.
    Hartman I, Raia CA, Zauhar RJ (2006) Evidence for a strong selenium–aromatic interaction derived from crystallographic data and ab initio quantum chemical calculations. Biopolymers 83:595–613. doi:10.1002/bip.20144 CrossRefGoogle Scholar
  9. 9.
    Saberinasab M, Salehzadeh S, Maghsoud Y, Bayat M (2016) The significant effect of electron donating and electron withdrawing substituents on nature and strength of an intermolecular Se∙∙∙∙πinteraction. A theoretical study. Comp Theor Chem 1078:9–15. doi:10.1016/j.comptc.2015.12.009 CrossRefGoogle Scholar
  10. 10.
    Saberinasab M, Salehzadeh S, Solimannejad M (2016) The effect of a strong cation∙∙∙∙π interaction on a weak selenium∙∙∙∙π interaction: a theoretical study. Comp Theor Chem 1092:41–46. doi:10.1016/j.comptc.2016.07.027 CrossRefGoogle Scholar
  11. 11.
    Caracelli I, Haiduc I, Zukerman-Schpector J, Tiekink ERT (2014) Supramolecular architectures based on M(lone pair)···π(arene) interactions for M=Se and Te. In: Patai S, Rappoport Z (eds) Chemistry of organic selenium and tellurium compounds, 4th edn. Wiley, New York, pp 973–988Google Scholar
  12. 12.
    Caracelli I, Haiduc I, Zukerman-Schpector J, Tiekink ERT (2013) Delocalised antimony(lone pair)- and bismuth-(lone pair)···π (arene) interactions: supramolecular assembly and other considerations. Coord Chem Rev 257:2863–2879. doi:10.1016/j.ccr.2013.05.022 CrossRefGoogle Scholar
  13. 13.
    Zukerman-Schpector J, Haiduc I, Tiekink ERT (2012) Supramolecular self-assembly of transition metal carbonyl molecules through M-CO(lone pair)···π (arene) interactions. Adv Phys Org Chem 60:49–92. doi:10.1016/B978-0-12-396970-5.00002-5 Google Scholar
  14. 14.
    Caracelli I, Zukerman-Schpector J, Tiekink ERT (2012) Supramolecular aggregation patterns based on the bio-inspired Se (lone pair) ⋯ π (aryl) synthon. Coord Chem Rev 256:412–438. doi:10.1016/j.ccr.2011.10.021 CrossRefGoogle Scholar
  15. 15.
    Caracelli I, Haiduc I, Zukerman-Schpector J, Tiekink ERT (2016) A new non-covalent bonding mode in supramolecular chemistry: main group element lone-pair···π(arene) interactions. In: Johnson DW, Hof F (eds) Aromatic interactions: frontiers in knowledge and application, monographs in supramolecular chemistry, no. 20. The Royal Society of Chemistry, UK, pp 89–124Google Scholar
  16. 16.
    Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biologicalrecognition: energetics and structures. Angew Chem Int Ed 50:4808–4842. doi:10.1002/anie.201007560 CrossRefGoogle Scholar
  17. 17.
    Wheeler SE (2013) Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc Chem Res 46:1029–1038. doi:10.1021/ar300109n CrossRefGoogle Scholar
  18. 18.
    Wheeler SE, Houk KN (2008) Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. J Am Chem Soc 130:10854–10855. doi:10.1021/ja802849j CrossRefGoogle Scholar
  19. 19.
    Wheeler SE (2012) Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc Chem Res 46:1029–1038. doi:10.1021/ar300109n CrossRefGoogle Scholar
  20. 20.
    Senćanski M, Došen-Mićović L, Šukalović V, Kostić-Rajačić S (2015) Theoretical insight into sulfur–aromatic interactions with extension to D2 receptor activation mechanism. Struct Chem 26:1139–1149. doi:10.1007/s11224-015-0574-z CrossRefGoogle Scholar
  21. 21.
    Ringer AL, Senenko A, Sherrill CD (2007) Models of S/π interactions in protein structures: comparison of the H2S–benzene complex with PDB data. Protein Sci 16:2216–2223. doi:10.1110/ps.073002307 CrossRefGoogle Scholar
  22. 22.
    Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195. doi:10.1021/cr00002a004 CrossRefGoogle Scholar
  23. 23.
    Cheng Q, Sandalova T, Lindqvist Y, Arnér ESJ (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284:3998–4008. doi:10.1074/jbc.M807068200 CrossRefGoogle Scholar
  24. 24.
    Hassan AE, Sheng J, Jiang J, Zhang JW, Huang Z (2009) Synthesis and crystallographic analysis of 5-Se-thymidine DNAs. Org Lett 11:2503–2506. doi:10.1021/ol9004867 CrossRefGoogle Scholar
  25. 25.
    Schaefer-Ramadan S, Thorpe C, Rozovsky S (2014) Site-specific insertion of selenium into the redoxactive disulfide of the flavoprotein augmenter of liver regeneration. Arch Biochem Biophys 548:60–65. doi:10.1016/j.abb.2014.02.001 CrossRefGoogle Scholar
  26. 26.
    Schaefer SA, Dong M, Rubenstein RP, Wilkie WA, Bahnson BJ, Thorpe C, Rozovsky S (2013) (77)Se enrichment of proteins expands the biological NMR toolbox. J Mol Biol 425:222–231. doi:10.1016/j.jmb.2012.11.011 CrossRefGoogle Scholar
  27. 27.
    Mander L, Liu HW (2010) Comprehensive natural products II: chemistry and biology, vol. 1. Newnes, OxfordGoogle Scholar
  28. 28.
    Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C (2010) Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry-US 49:6737–6745. doi:10.1021/bi100912m CrossRefGoogle Scholar
  29. 29.
    Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K (2012) An electrontransfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc 134:1442–1445. doi:10.1021/ja209881f CrossRefGoogle Scholar
  30. 30.
    Dmitrenko O, Thorpe C, Bach RD (2003) Effect of a charge-transfer interaction on the catalytic activity of Acyl-CoA dehydrogenase: a theoretical study of the role of oxidized flavin. J Phys Chem B 107:13229–13236. doi:10.1021/jp0348631 CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision E.01. Gaussian Inc., WallingfordGoogle Scholar
  32. 32.
    Grimme S (2006) Semiempirical GGA type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787–1799. doi:10.1002/jcc.20495 CrossRefGoogle Scholar
  33. 33.
    Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577. doi:10.1063/1.463096 CrossRefGoogle Scholar
  34. 34.
    Schaefer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. doi:10.1063/1.467146 CrossRefGoogle Scholar
  35. 35.
    Dunning Jr TH, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer HF (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28Google Scholar
  36. 36.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. doi:10.1063/1.448799 CrossRefGoogle Scholar
  37. 37.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298. doi:10.1063/1.448800 CrossRefGoogle Scholar
  38. 38.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. doi:10.1063/1.448975 CrossRefGoogle Scholar
  39. 39.
    PARADOX cluster at the Scientific Computing Laboratory of the Institute of Physics Belgrade, supported in part by the Serbian Ministry of Education and Science under project No. ON171017, and by the European Commission under FP7 projects HP-SEE, PRACE-1IP, PRACE-2IP, EGI-InSPIREGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Milan Senćanski
    • 1
  • Ivana Djordjević
    • 2
  • Sonja Grubišić
    • 2
  1. 1.Center for Multidisciplinary Research and Engineering, Institute of Nucelar Sciences VinčaUniversity of BelgradeBelgradeSerbia
  2. 2.ICTM, Center of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations