Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide

  • Vladimir S. Bystrov
  • Igor K. Bdikin
  • Maksim Silibin
  • Dmitry Karpinsky
  • Svitlana Kopyl
  • Ekaterina V. Paramonova
  • Gil Goncalves
Original Paper


Molecular modeling of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene (G) or graphene oxide (GO) were performed using the semi-empirical quantum approximation PM3 in HyperChem. The piezo properties of the composites were analyzed and compared with experimental data obtained for P(VDF-TrFE)-GO films. Qualitative agreement was obtained between the results of the modeling and the experimental results in terms of the properties of the measured effective piezoelectric coefficient d 33eff and its decrease in the presence of G/GO in comparison with the average computed piezoelectric coefficient <d 33>. When models incorporating one or several G layers with 54 carbon atoms were investigated, the average piezoelectric coefficient <d 33> was found to decrease to −9.8 pm/V for the one-sided model PVDF/G and to −18.98 pm/V for the sandwich model G/PVDF/G as compared with the calculated piezoelectric coefficient for pure PVDF (<d 33> = −42.2 pm/V computed in present work, and <d33> = −38.5 pm/V, obtained from J Mol Model 35 (2013) 19:3591–3602). When models incorporating one or several GO layers with 98 carbon atoms were considered, the piezoelectric coefficient was found to decrease to −14.6 pm/V for the one-sided PVDF/GO model and to −29.8 pm/V for the sandwich GO/PVDF/GO model as compared with the same calculated piezoelectric coefficient for pure PVDF.


Ferroelectric polymers Piezoelectrics Molecular modeling Graphene/graphene oxide Composites 



The authors wish to acknowledge the Russian Science Foundation (grant 16-19-10112).


  1. 1.
    Bystrov VS, Bdikin I, Heredia A, Pullar RC, Mishina E, Sigov A, Kholkin AL (2012) Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: Ciofani G, Menciassi A (eds) Piezoelectric nanomaterials for biomedical applications. Springer, Berlin, pp 187–211Google Scholar
  2. 2.
    Bystrov VS, Seyedhosseini E, Kopyl S, Bdikin IK, Kholkin AL (2014) Piezoelectricity and ferroelectricity in biomaterials: molecular modeling and piezoresponse force microscopy measurements. J Appl Phys 116(6):066803. doi: 10.1063/1.4891443 CrossRefGoogle Scholar
  3. 3.
    Bystrov VS (2016) Computer simulation nanostructures: bioferroelectric peptide nanotubes. LAP Lambert Academic Press, Saarbrucken. ISBN 978-3-659-92397-5Google Scholar
  4. 4.
    Goncalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, Gracio J (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRefGoogle Scholar
  5. 5.
    Kim D, Kim DW, Lim H-K, Jeon J, Kim H, Jung H-T, Lee H (2014) Inhibited phase behavior of gas hydrates in graphene oxide: influences of surface and geometric constraints. Phys Chem Chem Phys 16:22717CrossRefGoogle Scholar
  6. 6.
    Tayi AS, Shveyd AK, Sue ACH, Szarko JM, Rolczynski BS, Cao D, Kennedy TJ, Sarjeant AA, Stern CL, Paxton WF, Wu W, Dey SK, Fahrenbach AC, Guest JR, Mohseni H, Chen LX, Wang KL, Stoddart JF, Stupp SI (2012) Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488:485–489CrossRefGoogle Scholar
  7. 7.
    Zhang G, Li Q, Gu H, Jiang S, Han K, Gadinski MR, Haque MA, Zhang Q, Wang Q (2015) Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv Mater 27:1450–1454CrossRefGoogle Scholar
  8. 8.
    Chen S, Zeng XC (2014) Design of ferroelectric organic molecular crystals with ultrahigh polarization. J Am Chem Soc 136:6428–6436CrossRefGoogle Scholar
  9. 9.
    Heredia A, Meunier V, Bdikin IK, Gracio J, Balke N, Jesse S, Tselev A, Agarwal PK, Sumpter BG, Kalinin SV, Kholkin AL (2012) Nanoscale ferroelectricity in crystalline γ-glycine. Adv Funct Mater 22:2996–3003CrossRefGoogle Scholar
  10. 10.
    Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G (2010) Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4:610–614CrossRefGoogle Scholar
  11. 11.
    Bystrov VS, Paramonova E, Bdikin I, Kopyl S, Heredia A, Pullar RC, Kholkin AL (2012) BioFerroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics 440(1):3–24CrossRefGoogle Scholar
  12. 12.
    Hereida A, Bdikin I, Kopyl S, Mishina E, Semin S, Sigov A, German K, Bystrov V, Gracio J, Kholkin AL (2013) Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes. J Phys D Appl Phys 43:462001Google Scholar
  13. 13.
    Bystrov VS, Seyedhosseini E, Bdikin I, Kopyl S, Neumayer SM, Coutinho J, Kholkin AL (2015) BioFerroelectricity: glycine and thymine nanostructures computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics 475(1):107–126CrossRefGoogle Scholar
  14. 14.
    Bystrov VS, Seyedhosseini E, Bdikin IK, Kopyl S, Kholkin AL, Vasilev SG, Zelenovskiy PS, Vasileva DS, Shur VY (2016) Glycine nanostructures and domains in beta-glycine: computational modeling and PFM observations. Ferroelectrics 496:28–45CrossRefGoogle Scholar
  15. 15.
    Blinov L, Fridkin V, Palto S, Bune A, Dowben P, Ducharme S (2000) Two-dimension ferroelectrics. Physics-Uspekhi 43(3):243CrossRefGoogle Scholar
  16. 16.
    Fridkin V, Ducharme S (2014) Ferroelectricity at the nanoscale. Basics and applications. Springer, BerlinGoogle Scholar
  17. 17.
    Bystrov VS, Dekhtyar Y, Paramonova E, Pullar R, Katashev A, Polyaka N, Bystrova AV, Sapronova A, Fridkin V, Kliem H, Kholkin AL (2012) Polarization of PVDF and P(VDF-TrFE) thin films revealed by emission spectroscopy with computational simulation during phase transition. J Appl Phys 111:104113Google Scholar
  18. 18.
    Bae S-H, Kahya O, Sharma BK, Kwon J, Cho HJ, Özyilmaz B, Ahn J-H (2013) Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano 7:3130–3138CrossRefGoogle Scholar
  19. 19.
    Md Ataur R, Byung-Chul L, Duy-Thach P, Gwiy-Sang C (2013) Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater Struct 22:085017CrossRefGoogle Scholar
  20. 20.
    Sencadas V, Ribeiro C, Bdikin IK, Kholkin AL, Lanceros-Mendez S (2012) Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Phys Status Solidi A 209:2605–2609CrossRefGoogle Scholar
  21. 21.
    Bystrov VS, Bdikin IK, Kiselev DA, Yudin SG, Fridkin VM, Kholkin AL (2007) Nanoscale polarization patterning of ferroelectric Langmuir–Blodgett P(VDF-TrFE) films. J Phys D Appl Phys 40:4571–4577Google Scholar
  22. 22.
    Bystrov VS, Bystrova NK, Paramonova EV, Vizdrik G, Sapronova AV, Kuehn M, Kliem H, Kholkin AL (2007) First principle calculations of molecular polarization switching in P(VDF–TrFE) ferroelectric thin Langmuir–Blodgett films. J Phys Condens Matter 19:456210CrossRefGoogle Scholar
  23. 23.
    Bystrov VS, Paramonova EV, Bdikin IK, Bystrova AV, Pullar RC, Kholkin AL (2013) Molecular modelling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J Mol Mod 19:3591–3602CrossRefGoogle Scholar
  24. 24.
    Bystrov VS (2014) Molecular modeling and molecular dynamic simulation of the polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale. Phys B Condens Matter 432:21–25CrossRefGoogle Scholar
  25. 25.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  26. 26.
    Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54CrossRefGoogle Scholar
  27. 27.
    Zhao C, Xu X, Chen J, Yang F (2014) Optimization of preparation conditions of poly(vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design. Desalination 334:17–22CrossRefGoogle Scholar
  28. 28.
    Zhao C, Xu X, Chen J, Wang G, Yang F (2014) Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340:59–66CrossRefGoogle Scholar
  29. 29.
    Chang X, Wang Z, Quan S, Xu Y, Jiang Z, Shao L (2014) Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl Surf Sci 316:537–548CrossRefGoogle Scholar
  30. 30.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  31. 31.
    Layek RK, Samanta S, Chatterjee DP, Nandi AK (2010) Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation. Polymer 51:5846–5856CrossRefGoogle Scholar
  32. 32.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  33. 33.
    Ataur Rahman M, Chung G-S (2013) Synthesis of PVDF-graphene nanocomposites and their properties. J Alloys Compd 581:724–730CrossRefGoogle Scholar
  34. 34.
    Adohi BJP, Laur V, Haidar B, Brosseau C (2014) Measurement of the microwave effective permittivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene. Appl Phys Lett 104:082902CrossRefGoogle Scholar
  35. 35.
    Jiang ZY, Zheng GP, Han Z, Liu YZ, Yang JH (2014) Enhanced ferroelectric and pyroelectric properties of poly(vinylidene fluoride) with addition of graphene oxides. J Appl Phys 115:204101CrossRefGoogle Scholar
  36. 36.
    Shang J, Zhang Y, Yua L, Shen B, Lv F, Chu PK (2012) Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Mater Chem Phys 134:867–874CrossRefGoogle Scholar
  37. 37.
    Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene−polymer composites. J Phys Chem C 114:6588–6594CrossRefGoogle Scholar
  38. 38.
    Ding N, Chen X, Wu C-ML LX (2012) Computational investigation on the effect of graphene oxide sheets as nanofillers in poly(vinyl alcohol)/graphene oxide composites. J Phys Chem C 116:22532–22538Google Scholar
  39. 39.
    Lee J-H, Lee KY, Gupta MK, Kim TY, Lee D-Y, Oh J, Ryu C, Yoo WJ, Kang C-Y, Yoon S-J, Yoo J-B, Kim S-W (2014) Highly strectchable piezoelectric-pyroelectric hybrid nanogeneretor. Adv Mater 26(5):765–769CrossRefGoogle Scholar
  40. 40.
    An N, Liu S, Fang C, Yu R, Zhou X, Chrng Y (2015) Preparation and properties of β-phase graphene oxide/PVDF composite films. J Appl Polym Sci 132:41577CrossRefGoogle Scholar
  41. 41.
    Silibin MV, Bystrov VS, Karpinsky DV, Nasani N, Goncalves G, Gavrilin IM, Solnyshkin AV, Marques PAAP, Singh B, Bdikin IK (2017) Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films. Appl Surf Sci. doi: 10.1016/j.apsusc.2017.01.291
  42. 42.
    Hypercube Inc. (2002, 2010) HyperChem (versions 7.51 and 8.0). Hypercube Inc., GainesvilleGoogle Scholar
  43. 43.
    Yoshizawa K, Okahara K, Sato T, Tanaka K, Yamabe T (1994) Molecular orbital study of pyrolitic carbons based on small cluster model. Carbon 32(8):1517–1522CrossRefGoogle Scholar
  44. 44.
    Burian A, Ratuszna A, Dore J (1998) Radial distribution function analysis of the structure of activated carbons. Carbon 36:1613–1621CrossRefGoogle Scholar
  45. 45.
    Matthews MJ, Dresselhaus MS, Endo M, Sasabe Y, Takahashi T, Takeuchi K (1996) Characterization of polyparaphenylene (PPP)-based carbons. J Mater Res 11:3099–3109CrossRefGoogle Scholar
  46. 46.
    Wei Q, Tong X, Zhang G, Qiao J, Gong Q, Sun S (2015) Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5:1574–1602CrossRefGoogle Scholar
  47. 47.
    Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, RASPushchinoRussia
  2. 2.National Research University of Electronic Technology “MIET”MoscowRussia
  3. 3.Department of Mechanical Eng. & TEMAUniversity of AveiroAveiroPortugal
  4. 4.Scientific-Practical Materials Research Centre of NAS of BelarusMinskBelarus
  5. 5.CICECO & Dept. PhysicsUniversity of AveiroAveiroPortugal

Personalised recommendations