Advertisement

Thymine adsorption on two-dimensional boron nitride structures: first-principles studies

  • J. Castro-Medina
  • D. García-Toral
  • M. López-Fuentes
  • A. Sánchez-Castillo
  • S. Torres-Morales
  • L. Morales de la Garza
  • Gregorio H. Cocoletzi
Original Paper

Abstract

First-principles total-energy calculations were performed to investigate the structural and electronic properties of thymine (T) adsorption on pristine and Al-doped two-dimensional hexagonal boron nitride (2D-hBN) surfaces. Periodic density functional theory, as developed in the PWscf code of the quantum espresso package, was applied. The pseudopotential theory was used to deal with electron–ion interactions. The generalized gradient approximation was applied to treat the exchange-correlation energies. Van der Waals interactions were incorporated in the calculations. Considering T as an elongated molecule and the interactions through one oxygen atom of the molecule ring, two geometries were explored in pristine and Al-doped systems: in (1) the ring side O interacts with B, and (2) the O at the molecule end interacting with the B. The pristine case yields (4 × 4-a), (5 × 5-b) and (6 × 6-b) as the ground states, , while the doped system shows (4 × 4-a), (5 × 5-a) and (6 × 6-a) as the ground states. Calculations of the adsorption energies indicate chemisorption. Doping enhances the surface reactivity, inducing larger binding energies. The total density of states (DOS) was calculated and interpreted with the aid of the projected DOS. Below the Fermi energy, the DOS graphs indicate that p orbitals make the largest contributions. Above the Fermi level, the DOS is formed mainly by –s and H-s orbitals. The DOS graphs indicate that the structures have non-semiconductor behavior.

Keywords

Density functional theory First principles study Two-dimensional boron nitride layer Thymine 

Notes

Acknowledgements

G.H.C. acknowledges the financial support of Vicerrectoría de Investigación y Estudios de Posgrado de la Benemérita Universidad Autónoma de Puebla (VIEP-BUAP), grant 31/EXC/06-G, Consejo Nacional de Ciencia y Tecnología (CONACYT) project #223180 and Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-191). Calculations were performed in the Dirección General de Cómputo y de Tecnologías de Información y Comunicación de la Universidad Nacional Autonoma de Mexico (DGCTIC-UNAM) supercomputing center, the computer center of the Instituto de Física BUAP, and the Laboratorio Nacional de Supercómputo (LNS)-BUAP.

References

  1. 1.
    Schwiers F (2010) Nat Nanotechnol 5:487. doi: 10.1038/nnano.2010.89 CrossRefGoogle Scholar
  2. 2.
    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Nat Nanotechnol 10:227. doi: 10.1038/nnano.2014.325 CrossRefGoogle Scholar
  3. 3.
    Cao XGuo J (2015) IEEE Trans Electron Device 62(2)Google Scholar
  4. 4.
    Lee G-H, Yu Y-J, Cui X, Petrone N, Lee C-H, Choi MS, Lee D-Y, Lee C, Yoo WJ, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J (2013) ACS Nano 7(9):7931CrossRefGoogle Scholar
  5. 5.
    Novoselov KS, Jiang D, Schedin F, Booth T, Khotkevich VV, Morozov S, Geim AK (2005) Proc Natl Acad Sci USA 102:10451CrossRefGoogle Scholar
  6. 6.
    Sánchez-Ochoa F, Guerrero-Sánchez J, Canto GI, Cocoletzi GH, Takeuchi N (2013) J Mol Model 19:2925CrossRefGoogle Scholar
  7. 7.
    Pacilé D, Meyer JC, Girit ÇÖ, Zettl A (2008) Appl Phys Lett 92:133107CrossRefGoogle Scholar
  8. 8.
    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1995) Phys Rev Lett 75:3918CrossRefGoogle Scholar
  9. 9.
    W.H. Balmain looks back: Balmain Bros. (Bega) supplement, Bega district news, May 29, 1959: 50 years of Balmain Bros. (Bega) Limited, the Motor House, 1909–1959Google Scholar
  10. 10.
    Muthu RN, Rajashabala S, Kannan R (2016) Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium. Renew Energy 90:554CrossRefGoogle Scholar
  11. 11.
    Kaloni TP, Schreckenbach G, Freund MS (2014) Large enhancement and tunable band gap in silicene by small organic molecule adsorption. Phys Chem 118:23361Google Scholar
  12. 12.
    Sichel EK, Miller RE, Abrahams MS, Buiocchi CJ (1976) Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Phys Rev B 13:4607CrossRefGoogle Scholar
  13. 13.
    Topsakal M, Aktürk E, Ciraci S (2009) Phys Rev B 79:115442CrossRefGoogle Scholar
  14. 14.
    Ponce-Pérez R, Cocoletzi GH, Takeuchi N (2016) J Mol Model 22:226. doi: 10.1007/s00894-016-3100-3 CrossRefGoogle Scholar
  15. 15.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045CrossRefGoogle Scholar
  16. 16.
    von Barth U (2004) Phys Scr T109:9–39CrossRefGoogle Scholar
  17. 17.
    Giannozzi P et al (2009) Phys Condens Matter 21:395502CrossRefGoogle Scholar
  18. 18.
    Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Phys Rev B 47:10142CrossRefGoogle Scholar
  19. 19.
    Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  20. 20.
    Dion M, Rydberg H, Schroder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401CrossRefGoogle Scholar
  21. 21.
    Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Van der Waals density functional: self-consistent potential and the nature of the Van der Waals bond. Phys Rev B 76:125112CrossRefGoogle Scholar
  22. 22.
    Roman-Pérez G, Soler JM (2009) Efficient implementation of a Van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102CrossRefGoogle Scholar
  23. 23.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  24. 24.
    Jiang DE, Carter EA (2004) J Phys Chem B 108:19140–19145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • J. Castro-Medina
    • 1
  • D. García-Toral
    • 2
  • M. López-Fuentes
    • 2
  • A. Sánchez-Castillo
    • 3
  • S. Torres-Morales
    • 4
  • L. Morales de la Garza
    • 5
  • Gregorio H. Cocoletzi
    • 1
  1. 1.Instituto de Física ‘Luís Rivera Terrazas’Benemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Escuela Superior de ApanUniversidad Autónoma del Estado de HidalgoApanMexico
  4. 4.Facultad de Ciencias Químicas y FarmaciaUniversidad de San Carlos de GuatemalaCiudad de GuatemalaGuatemala
  5. 5.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations