Skip to main content

Advertisement

Log in

Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The demand for new therapies has encouraged the development of faster and cheaper methods of drug design. Considering the number of potential biological targets for new drugs, the docking-based virtual screening (DBVS) approach has occupied a prominent role among modern strategies for identifying new bioactive substances. Some tools have been developed to validate docking methodologies and identify false positives, such as the receiver operating characteristic (ROC) curve. In this context, a database with 31 molecular targets called the Our Own Molecular Targets Data Bank (OOMT) was validated using the root-mean-square deviation (RMSD) and the area under the ROC curve (AUC) with two different docking methodologies: AutoDock Vina and DOCK 6. Sixteen molecular targets showed AUC values of >0.8, and those targets were selected for molecular docking studies. The drug-likeness properties were then determined for 473 Brazilian natural compounds that were obtained from the ZINC database. Ninety-six compounds showed similar drug-likeness property values to the marked drugs (positive values). These compounds were submitted to DBVS for 16 molecular targets. Our results showed that AutoDock Vina was more appropriate than DOCK 6 for performing DBVS experiments. Furthermore, this work suggests that three compounds—ZINC13513540, ZINC06041137, and ZINC1342926—are inhibitors of the three molecular targets 1AGW, 2ZOQ, and 3EYG, respectively, which are associated with cancer. Finally, since ZINC and the PDB were solely created to store biomolecule structures, their utilization requires the application of filters to improve the first steps of the drug development process.

Evaluation of docking methods used for virtual screening

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khanna I (2012) Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today 17:1088–1102. doi:10.1016/j.drudis.2012.05.007

  2. Geromichalos GD, Alifieris CE, Geromichalou EG, Trafalis DT (2016) Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; part I. J Buon 21:764–779

  3. Cheng T, Li Q, Zhou Z et al (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14:133–41. doi:10.1208/s12248-012-9322-0

    Article  CAS  Google Scholar 

  4. Lauro G, Romano A, Riccio R, Bifulco G (2011) Inverse virtual screening of antitumor targets: pilot study on a small database of natural bioactive compounds. J Nat Prod 74:1401–1407. doi:10.1021/np100935s

  5. Glaab E (2016) Building a virtual ligand screening pipeline using free software: a survey. Brief Bioinform 17:352–366. doi:10.1093/bib/bbv037

  6. Bursulaya BD, Bursulaya BD, Totrov M et al (2004) Comparative study of several algorithms for flexible ligand docking. J Comput Aided Mol Des 17:755–763

  7. Ding Y, Fang Y, Moreno J et al (2016) Assessing the similarity of ligand binding conformations with the contact mode score. Comput Biol Chem 64:403–413. doi:10.1016/j.compbiolchem.2016.08.007

  8. Triballeau N, Acher F, Brabet I et al (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534–2547. doi:10.1021/jm049092j

  9. Zhao W, Hevener KE, White SW et al (2009) A statistical framework to evaluate virtual screening. BMC Bioinformatics 10:225. doi:10.1186/1471-2105-10-225

    Article  Google Scholar 

  10. Lätti S, Niinivehmas S, Pentikäinen OT (2016) Rocker: open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization. J Cheminform 8:45. doi:10.1186/s13321-016-0158-y

  11. Westermaier Y, Barril X, Scapozza L (2015) Virtual screening: an in silico tool for interlacing the chemical universe with the proteome. Methods 71:44–57. doi:10.1016/j.ymeth.2014.08.001

  12. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165. doi: 10.1126/science.1168243

  13. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334.

  14. Carregal AP, Comar M, Alves SN et al (2012) Inverse virtual screening studies of selected natural compounds from Cerrado. Int J Quantum Chem 112:3333–3340. doi:10.1002/qua.24205

    Article  CAS  Google Scholar 

  15. Carregal AP, Comar M Jr, Taranto AG (2013) Our Own Molecular Targets Data Bank (OOMT). Biochem Biotechnol Rep 2:14–16

  16. Rose PW, Prlić A, Bi C et al (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43:D345–D356. doi:10.1093/nar/gku1214

  17. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. doi:10.1021/ci3001277

  18. Walters WP, Murcko MA (2002) Prediction of “drug-likeness”. Adv Drug Deliv Rev 54:255–271. doi:10.1016/S0169-409X(02)00003-0

  19. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:1100–1107. doi:10.1093/nar/gkr777

  20. Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. doi:10.1093/nar/gkt1031

    Article  CAS  Google Scholar 

  21. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801. doi:10.1021/jm0608356

    Article  CAS  Google Scholar 

  22. Jaghoori MM, Bleijlevens B, Olabarriaga SD (2016) 1001 Ways to run AutoDock Vina for virtual screening. J Comput Aided Mol Des 30:237–249. doi:10.1007/s10822-016-9900-9

    Article  CAS  Google Scholar 

  23. Lang PT, Brozell SR, Mukherjee S et al (2009) DOCK 6: combining techniques to model RNA–small molecule complexes. RNA 15:1219–1230. doi:10.1261/rna.1563609

  24. Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13:505–524. doi:10.1002/jcc.540130412

    Article  CAS  Google Scholar 

  25. Zou X, Sun Y, Kuntz I (1999) Inclusion of solvation in ligand binding free energy calculations using the generalized-Born model. J Am Chem Soc 121:8033–8043. doi:10.1021/ja984102p

  26. Liu HY, Kuntz ID, Zou XQ (2004) Pairwise GB/SA scoring function for structure-based drug design. J Phys Chem B 108:5453–5462. doi:10.1021/jp0312518

    Article  CAS  Google Scholar 

  27. IBM Corporation (2010) IBM SPSS Statistics for Windows. IBM Corporation, Armonk

  28. Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5:32–38. doi:10.1137/0105003

  29. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288. doi:10.1016/0022-2836(82)90153-X

  30. Accelrys Software Inc. (2015) Discovery Studio Modeling Environment, release 4.1. Accelrys Software Inc., San Diego

  31. dos Santos IA (2012) Construção de uma base de dados para triagem virtual de potenciais inibidores da UDP-N-acetilglicosamina pirofosforilase do Moniliophthora perniciosa. Universidade Estadual de Feira de Santana

  32. Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473. doi:10.1021/ci500588j

  33. ChemAxon (2015) MarvinSketch. ChemAxon, Budapest

  34. Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32. doi:10.1007/s00894-012-1667-x

    Article  CAS  Google Scholar 

  35. Stewart JJP (2012) MOPAC. Stewart Computational Chemistry, Colorado Springs

  36. Balius TE, Mukherjee S, Rizzo RC (2011) Implementation and evaluation of a docking-rescoring method using molecular footprint comparisons. J Comput Chem 32:2273–89. doi:10.1002/jcc.21814

  37. Brozell SR, Mukherjee S, Balius TE et al (2012) Evaluation of DOCK 6 as a pose generation and database enrichment tool. J Comput Aided Mol Des 26:749–773. doi:10.1007/s10822-012-9565-y

    Article  CAS  Google Scholar 

  38. Gordon JC, Myers JB, Folta T et al (2005) H++: a server for estimating pK as and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371. doi:10.1093/nar/gki464

  39. Myers J, Grothaus G, Narayanan S, Onufriev A (2006) A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules. Proteins Struct Funct Bioinf 63:928–938. doi:10.1002/prot.20922

  40. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:537–541. doi:10.1093/nar/gks375

    Article  Google Scholar 

  41. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    Article  CAS  Google Scholar 

  42. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

  43. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19:3181–3184. doi:10.1016/S0040-4039(01)94977-9

    Article  Google Scholar 

  44. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

  45. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949. doi:10.1038/nrd1549

    Article  CAS  Google Scholar 

  46. Mohammadi M, McMahon G, Sun L, et al. (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960

  47. Kinoshita T, Yoshida I, Nakae S et al (2008) Crystal structure of human mono-phosphorylated ERK1 at Tyr204. Biochem Biophys Res Commun 377:1123–1127. doi:10.1016/j.bbrc.2008.10.127

    Article  CAS  Google Scholar 

  48. Williams NK, Bamert RS, Patel O et al (2009) Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol 387:219–232. doi:10.1016/j.jmb.2009.01.041

  49. Forli S, Huey R, Pique ME et al (2016) Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919. doi:10.1038/nprot.2016.051

    Article  CAS  Google Scholar 

  50. Nunes RR, dos Santos Costa M, dos Reis Santos B, et al (2016) Successful application of a virtual screening and molecular dynamics simulation against antimalarial molecular targets. Mem Inst Oswaldo Cruz 1–10. doi:10.1590/0074-02760160207

  51. Habib E, Maia B, Campos VA, et al (2017) Octopus: a platform for the virtual high-throughput screening of a pool of compounds against a set of molecular targets. J Mol Model 23:26. doi: 10.1007/s00894-016-3184-9

Download references

Acknowledgements

The authors are grateful for the support provided by the Foundation for Research Support of Minas Gerais (FAPEMIG APQ-00557-14 and APQ-02860-16), the Higher Level Personnel Improvement Commission (CAPES), the National Research Council (CNPq UNIVERSAL 449984/2014-1), and the Graduate Program in Pharmaceutical Sciences from the Federal University of Sao Joao del Rei (PPGCF/UFSJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Carregal.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT 2015)

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carregal, A.P., Maciel, F.V., Carregal, J.B. et al. Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database. J Mol Model 23, 111 (2017). https://doi.org/10.1007/s00894-017-3253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3253-8

Keywords

Navigation