Optimally tuned functionals improving the description of optical and electronic properties of the phthalocyanine molecule

  • Tamires Lima Pereira
  • Luciano Almeida Leal
  • Wiliam Ferreira da Cunha
  • Rafael Timóteo de Sousa Júnior
  • Luiz Antonio Ribeiro Junior
  • Demétrio Antonio da Silva FilhoEmail author
Original Paper
Part of the following topical collections:
  1. VI Symposium on Electronic Structure and Molecular Dynamics – VI SeedMol


By means of Density functional theory and time-dependent density functional theory calculations, we present a comprehensive investigation on the influence of different functional schemes on electronic and optical properties of the phthalocyanine molecule. By carrying out our own tuning on the OT-LC-BLYP/6-31G(d,p) functional, we show that such a procedure is fundamental to accurately match experimental results. We compare our results to several others available in the literature, including the B3LYP/6-31+G(d,p) set, which is commonly portrayed as the best combination in order to obtain a good description of the band gap. The results obtained here present not only significant improvement of the optical properties from the conventional BLYP, but we can also objectively report an improvement of our tuned functional when compared to the current benchmark of the literature as far as optical properties are concerned. Particularly, by means of this approach, it was possible to achieve a good agreement between the theoretical and experimental optical gap as well as of the positioning of the main peaks in the absorption spectrum. Our results thus suggest that correcting the long-range term on exchange term of the Coulomb operator, by means of a tuning procedure, is a good option to accurately describe properties of the phthalocyanine molecule.


DFT UV-Vis Phthalocyanine molecule Optical gap Excited states Oscillator strength 



The authors gratefully acknowledge the financial support from Brazilian Research Councils CNPq, CAPES, FAP-DF, and FINATEC and CENAPAD-SP for providing the computational facilities. D.A.S.F. gratefully acknowledges the financial support from the Brazilian Research Council CNPq, grant 306968/2013-4 and FAP-DF grant 0193.001.062/2015. L.A.R.J. gratefully acknowledges the financial support from the Brazilian Research Council FAP-DF grant 0193.000942/2015. The authors R.T.S.J. and L.A.R.J. wish to thank the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016).


  1. 1.
    Lever ABP, Hempstead MR, Leznoff CC, Liu W, Melnik M, Nevin WA, Seymour P (1986). Pure Appl Chem 58:1467–1476CrossRefGoogle Scholar
  2. 2.
    Linstead RP (1934). J Chem Soc 0:1016–1017CrossRefGoogle Scholar
  3. 3.
    Mihill A, Buell W, Fink M (1993). J Chem Phys 99:6416–6420CrossRefGoogle Scholar
  4. 4.
    Claessens CG, Hahn U, Torres T (2008). Chem Rec 8:75–97CrossRefGoogle Scholar
  5. 5.
    Poldi G, Caglio S (2013). Opt Spectrosc 114:929–935CrossRefGoogle Scholar
  6. 6.
    Sakamoto K, Okumura EO (2009). Materials 2:1127–1179CrossRefGoogle Scholar
  7. 7.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007). Chem Rev 107(4):926–952CrossRefGoogle Scholar
  8. 8.
    Torre G, Claessens CG, Torres T (2007). Chem Commun 20:2000–2015CrossRefGoogle Scholar
  9. 9.
    da Silva Filho DA, Coropceanu V, Gruhn NE, de Oliveira Neto PH, Bredas J-L (2013). Chem Commun 49(54):6069–6071Google Scholar
  10. 10.
    Torre G, Vázquez P, López FA, Torres T (1998). J Mater Chem 8:1671–1683CrossRefGoogle Scholar
  11. 11.
    Gottfried J (2015). Surf Sci Rep 70:259–379CrossRefGoogle Scholar
  12. 12.
    Matsumoto S, Matsuhama K, Mizuguchi J (1999). Acta Crystallogr C55:131–133Google Scholar
  13. 13.
    Lima IT, Risko C, Aziz SG, da Silva Filho DA, Bredas J-L (2014). J Mater Chem C 2(42):8873–8879CrossRefGoogle Scholar
  14. 14.
    Kronik L, Stein T, Refaely-Abramson S, Baer R (2012). J Chem Theory Comput 8:1515–1531CrossRefGoogle Scholar
  15. 15.
    Kuritz N, Stein T, Baer R, Kronik L (2011). J Chem Theory Comput 7:2408–2415CrossRefGoogle Scholar
  16. 16.
    Toyota K, Hasegawa J, Nakatsuji H. J Phys Chem 101:446–451Google Scholar
  17. 17.
    Liao MS, Scheiner S (2001). J Chem Phys 114:9780–9791CrossRefGoogle Scholar
  18. 18.
    Ortí E, Brèdas JL, Clarisse C (1990). J Phys Chem 92:1298–1235CrossRefGoogle Scholar
  19. 19.
    Fornari RP, Aragó R, Troisi A (2016). J Phys Chem 120:7987–7996CrossRefGoogle Scholar
  20. 20.
    Leznoff CC, Lever ABP (1989) Phthalocyanines properties and applications, v.1. VCH PublishersGoogle Scholar
  21. 21.
    Nicholls D, Li RR, Ware B, Pansegrau C, Çakir D, Hoffmann MR, Oncel N (2015). J Phys Chem C 119(18):9845–9850CrossRefGoogle Scholar
  22. 22.
    Tackley DR, Dent G, Smith WE (2000). Phys Chem Chem Phys 2:3949–3955CrossRefGoogle Scholar
  23. 23.
    Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, Haenle JC, Staffeld P, Baro A, Giesselmann F, Laschat S (2016). Chem Rev 116:1139–1241CrossRefGoogle Scholar
  24. 24.
    Dreuw A, Head-Gordon M (2004). J Am Chem Soc 126(12):4007–4016CrossRefGoogle Scholar
  25. 25.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004). J Chem Phys 120:08425CrossRefGoogle Scholar
  26. 26.
    Chaia J, Head-Gordon M (2008). J Chem Phys 128:084106CrossRefGoogle Scholar
  27. 27.
    Wong MB, Cordaro GJ (2008). J Chem Phys 129:214703CrossRefGoogle Scholar
  28. 28.
    Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  29. 29.
    National institute of standards and technology, 574-93-6 CAS registry numberGoogle Scholar
  30. 30.
    Theisen RF, Huang L, Fleetham T, James B (2015). J Chem Phys 142:094310CrossRefGoogle Scholar
  31. 31.
    Bagayoko D (2014). AIP Adv 4:127104CrossRefGoogle Scholar
  32. 32.
    Kumar GA, Thomas J, George N, Unnikrishnan NV, Radhakrishnan P, Nampoori VPN, Vallabhan CPG (2000). J Mater Sci 35:2539– 2542CrossRefGoogle Scholar
  33. 33.
    Lima IT, Prado AS, Martins JBL, Neto PHO, Ceschin AM, da Cunha WF, Filho DAS (2016). J Phys Chem A 120:4944CrossRefGoogle Scholar
  34. 34.
    Papajak E, Truhlar DG (2010). J Chem Theo Comput 6:597CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford C. T.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tamires Lima Pereira
    • 1
  • Luciano Almeida Leal
    • 2
  • Wiliam Ferreira da Cunha
    • 1
  • Rafael Timóteo de Sousa Júnior
    • 2
  • Luiz Antonio Ribeiro Junior
    • 1
  • Demétrio Antonio da Silva Filho
    • 1
    Email author
  1. 1.Institute of PhysicsUniversity of BrasíliaBrasíliaBrazil
  2. 2.Department of Electrical EngineeringUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations