Advertisement

Structural dependence of MEH-PPV chromism in solution

  • Carlos E. T. de Magalhães
  • Ranylson M. L. Savedra
  • Karina S. Dias
  • Rodrigo Ramos
  • Melissa F. Siqueira
Original Paper
  • 163 Downloads
Part of the following topical collections:
  1. Brazilian Symposium of Theoretical Chemistry (SBQT 2015)

Abstract

The chromism observed in the MEH-PPV polymer in tetrahydrofuran (THF) solution is discussed as a function of the structural morphology of the backbone chains. To evaluate this phenomenon, we carried out simulations employing a hybrid methodology using molecular dynamics and quantum mechanical approaches. Our results support the hypothesis that the morphological order–disorder transition is related to the change from red to blue phase observed experimentally. The morphological disorder is associated with total or partial twisted arrangements in the polymer backbone, which induces an electronic conjugation length more confined to shorter segments. In addition, the main band of the MEH-PPV UV–Vis spectrum at the lower wavelength is related to the blue phase, in contrast to the red phase found for the more planar backbone chains.

Keywords

Organic semiconductor Molecular dynamics simulation Sequential QM/MM Spectroscopy Organic electronics 

Notes

Acknowledgments

We thank the Brazilian funding agencies CNPq, FAPEMIG, and CAPES, as well as the National Institute of Science and Technology on Organic Electronics (INEO/INCT) for financial support and fellowships. In addition, we are also grateful to Federal University of Ouro Preto (UFOP) for computational and partial financial support.

References

  1. 1.
    Yu L, Liu J, Hu S, He R, Yang W, Wu H, Peng J, Xia R, Bradley DDC (2013) Adv Funct Mater 23(35):4366. doi: 10.1002/adfm.201203675 CrossRefGoogle Scholar
  2. 2.
    Coutinho D, Faria G, Balogh D, Faria R (2015) Solar Energy Mater Solar Cells 143:503. doi: 10.1016/j.solmat.2015.07.047 CrossRefGoogle Scholar
  3. 3.
    Ferreira G, Tannure A, Cardoso L, Siqueira M, Bianchi A, Bianchi R (2017) Sensor Actuat B–Chem 240:1003. doi: 10.1016/j.snb.2016.06.101 CrossRefGoogle Scholar
  4. 4.
    Bernardinelli OD, Faria GC, de Oliveira Nunes LA, Faria RM, deAzevedo ER, Pinto MFS (2012) J Phys Chem A 116(17):4285. doi: 10.1021/jp210953m CrossRefGoogle Scholar
  5. 5.
    Ramos R, Siqueira MF, Cazati T, Faria RM, Caldas MJ (2015) Phys Chem Chem Phys 17:20530. doi: 10.1039/C5CP02513C CrossRefGoogle Scholar
  6. 6.
    Leener CD, Hennebicq E, Sancho-Garcia JC, Beljonne D (2009) J Phys Chem B 113(5):1311. doi: 10.1021/jp8029902 CrossRefGoogle Scholar
  7. 7.
    de Magalhães CET, Silva MMD, Savedra RML, Siqueira MF (2016) Mol Phys (forthcoming). doi: 10.1080/00268976.2016.1265679
  8. 8.
    Jain V, Kokil A (2014) Optical properties of functional polymers and nano engineering applications. CRC PressGoogle Scholar
  9. 9.
    Irie M, Yokoyama Y, Seki T (2013) New frontiers in photochromism. SpringerGoogle Scholar
  10. 10.
    Dürr H, Bouas-Laurent H (2003) Photochromism: molecules and systems. Elsevier Science, AmsterdamGoogle Scholar
  11. 11.
    Masi S, Colella S, Listorti A, Roiati V, Liscio A, Palermo V, Rizzo A, Gigli G (2015) Scientific Reports 5. doi: 10.1038/srep07725  10.1038/srep07725
  12. 12.
    Yu JC, Jang JI, Lee BR, Lee GW, Han JT, Song MH (2014) ACS Appl Mater Inter 6(3):2067. doi: 10.1021/am4051487 CrossRefGoogle Scholar
  13. 13.
    Hooley EN, Tilley AJ, White JM, Ghiggino KP, Bell TDM (2014) Phys Chem Chem Phys 16:7108. doi: 10.1039/C4CP00276H CrossRefGoogle Scholar
  14. 14.
    Köhler A, Hoffmann ST, Bässler H (2012) J Am Chem. Soc 134(28):11594. doi: 10.1021/ja302408a CrossRefGoogle Scholar
  15. 15.
    Massuyeau F, Duvail JL, Athalin H, Lorcy JM, Lefrant S, Wéry J, Faulques E Nanotechnology 20(15):155701(1). doi: 10.1088/0957-4484/20/15/155701
  16. 16.
    Bronze-Uhle ES, Borin JF, Batagin-Neto A, Alves MC, Graeff CF (2012) Mater Chem Phys 132 (2–3):846. doi: 10.1016/j.matchemphys.2011.12.022 CrossRefGoogle Scholar
  17. 17.
    Chakraborty R, Rothberg LJ (2016) J Phys Chem A 120(4):551. doi: 10.1021/acs.jpca.5b11349 CrossRefGoogle Scholar
  18. 18.
    Ebihara Y, Vacha M (2008) J Phys Chem B 112(40):12575. doi: 10.1021/jp806963u CrossRefGoogle Scholar
  19. 19.
    Feist FA, Zickler MF, Basché T (2011) Chem Phys Chem 12(8):1499. doi: 10.1002/cphc.201001010 Google Scholar
  20. 20.
    Lampert ZE, Reynolds CL, Papanikolas JM, Aboelfotoh MO (2012) J Phys Chem B 116(42):12835. doi: 10.1021/jp304199u CrossRefGoogle Scholar
  21. 21.
    Nguyen TQ, Schwartz BJ, Schaller RD, Johnson JC, Lee LF, Haber LH, Saykally RJ (2001) J Phys Chem B 105(22):5153. doi: 10.1021/jp004456e CrossRefGoogle Scholar
  22. 22.
    Schwartz BJ (2003) Annu Rev Phys Chem 54(1):141. doi: 10.1146/annurev.physchem.54.011002.103811 CrossRefGoogle Scholar
  23. 23.
    Cossiello RF, Akcelrud L, Atvars TDZ (2005) J Braz Chem Soc 16:74. doi: 10.1590/S0103-50532005000100012 CrossRefGoogle Scholar
  24. 24.
    Adamo C, Barone V (1999) J Chem Phys 110(13):6158. doi: 10.1063/1.478522 CrossRefGoogle Scholar
  25. 25.
    Adamo C, Scuseria GE, Barone V (1999) J Phys C 111(7):2889. doi: 10.1063/1.479571 Google Scholar
  26. 26.
    Perdew JP, Ernzerhof M, Burke K (1996) J Phys C 105(22):9982. doi: 10.1063/1.472933 Google Scholar
  27. 27.
    Ernzerhof M, Scuseria GE (1999) J Phys C 110(11):5029. doi: 10.1063/1.478401 Google Scholar
  28. 28.
    Ridley J, Zerner M (1974) J Mol Spectrosc 50(1):457. doi: 10.1016/0022-2852(74)90248-3 CrossRefGoogle Scholar
  29. 29.
    Anderson WP, Edwards WD, Zerner MC (1986) Inorg Chem 25(16):2728. doi: 10.1021/ic00236a015 CrossRefGoogle Scholar
  30. 30.
    Cardoso LC, Savedra RML, Silva MM, Ferreira GR, Bianchi RF, Siqueira MF (2015) J Phys Chem A 119(34):9037. doi: 10.1021/acs.jpca.5b04225 Google Scholar
  31. 31.
    Savedra RML, Pinto MFS, Trsic M (2006) J Chem Phys 125(14):144901. doi: 10.1063/1.2354498 CrossRefGoogle Scholar
  32. 32.
    Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2(1):73. doi: 10.1002/wcms.81 CrossRefGoogle Scholar
  33. 33.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4(3):435. doi: 10.1021/ct700301q CrossRefGoogle Scholar
  34. 34.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) SoftwareX 1–2:19. doi: 10.1016/j.softx.2015.06.001 CrossRefGoogle Scholar
  35. 35.
    Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) J Comput Chem 25(13):1656. doi: 10.1002/jcc.20090 CrossRefGoogle Scholar
  36. 36.
    Georg HC, Fernandes TS, Canuto S, Takenaka N, Kitamura Y, Nagaoka M (2014) A combination of the sequential QM/MM and the free energy gradient methodologies with applications. Springer US, Boston, pp 231–247Google Scholar
  37. 37.
    Heck A, Kranz JJ, Elstner M (2016) J Chem Theory Comput 12(7):3087. doi: 10.1021/acs.jctc.6b00215 CrossRefGoogle Scholar
  38. 38.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33. doi: 10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  39. 39.
    Schimitberger T, Ferreira G, Akcelrud L, Saraiva M, Bianchi R (2013) Med Eng Phys 35(1):140. doi: 10.1016/j.medengphy.2012.08.004 CrossRefGoogle Scholar
  40. 40.
    Bär F, Huber W, Handschig G, Martin H, Kuhn H (1960) J Chem Phys 32(2):470. doi: 10.1063/1.1730718 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratório de Simulação Molecular de Materiais, Departamento de FísicaUniversidade Federal de Ouro PretoPreto–MGBrazil
  2. 2.Laboratório de Polímeros e Propriedades Eletrônicas de Materiais, Departamento de FísicaUniversidade Federal de Ouro PretoOuro Preto–MGBrazil
  3. 3.Instituto de FísicaUniversidade de São PauloSão Paulo–SPBrazil

Personalised recommendations