Methylenecyclopropene: local vision of the first 1B2 excited state

  • Julien Racine
  • Mohamed Abdelhak Touadjine
  • Ali Rahmouni
  • Stéphane Humbel
Original Paper
Part of the following topical collections:
  1. Festschrift in Honor of Henry Chermette

Abstract

The 1A1 ground and the first 1B2 excited states of the methylenecyclopropene (triafulvene) are described by localized wave functions, based on 20 structures valence bond structures. The results are compared to CASSCF(4,4) calculations for both the energetics and the dipole moment. Additional calculations with partial electronic delocalization are presented, and it is shown that the dipole moment modification does not correspond to a situation where the antiaromatic situation prevails (with 4n electrons in the cycle). Part of the analysis uses a “trust factor” that helps to decide if a wave function is appropriate to describe a given state. The trust factor compares the VB wave function to the CASSCF’s with their overlap. Finally, the valence bond density is used to produce density maps that illustrate the electron transfer upon excitation.

Graphical Abstract

A projector-based method compares CASSCF wave functions to local wave functions, including Lewis structures as shown in the picture. A “trust factor” (τ) is obtained. Both the ground state and the first excited state of the methylenecyclopropene are discussed

Keywords

Dipole moment Electronic density Excited state Valence bond 

Notes

Acknowledgements

Professor Wei Wu at Xiamen University is gratefully acknowledged for the XMVB code. The authors also acknowledge Dr. Tognetti and Pr. Christophe Morell for the access to the Descriptor algorithm to integrate the density differences.

References

  1. 1.
    Berthier G, Pullman B (1949) Configuration géométrique et moment dipolaire des hydrocarbures conjugués. Bull Soc Chim Fr 16:D457–D465Google Scholar
  2. 2.
    Syrkin Y, Dyotkina M (1946) The resonance energies of the polynuclear hydrocarbon. Bull Académie Sci URSS 2:153–178Google Scholar
  3. 3.
    Roberts JD, Streitwieser A Jr, Regan CM (1952) Small-ring compounds. X. Molecular orbital calculations of properties of some small-ring hydrocarbons and free radicals. J Am Chem Soc 74:4579–4582Google Scholar
  4. 4.
    Staley SW, Norden TD (1984) Synthesis and direct observation of methylenecyclopropane. J Am Chem Soc 106:3699–3700CrossRefGoogle Scholar
  5. 5.
    Billups WE, Lin LJ, Casserly EW (1984) Synthesis of methylenecyclopropene. J Am Chem Soc 106:3698–3699CrossRefGoogle Scholar
  6. 6.
    Maier G, Hoppe M, Lanz K, Reisenauer HP (1984) Neue wege zum cyclobutadien und methylencyclopropen. Tetrahedron Lett 25:5645–5648CrossRefGoogle Scholar
  7. 7.
    Saebø S, Stroble S, Collier W et al (1999) Aromatic character of tria- and pentafulvene and their exocyclic Si, Ge, and Sn derivatives. An ab initio study. J Org Chem 64:1311–1318Google Scholar
  8. 8.
    Najafian K, von Ragué SP, Tidwell TT (2003) Aromaticity and antiaromaticity in fulvenes, ketocyclopolyenes, fulvenones, and diazocyclopolyenes. Org Biomol Chem 1:3410–3417CrossRefGoogle Scholar
  9. 9.
    Nakajima T, Nakatsuji H (1999) Energy gradient method for the ground, excited, ionized, and electron-attached states calculated by the SAC (symmetry-adapted cluster)/SAC–CI (configuration interaction) method. Chem Phys 242:177–193CrossRefGoogle Scholar
  10. 10.
    Möllerstedt H, Piqueras MC, Crespo R, Ottosson H (2004) Fulvenes, fulvalenes, and azulene: are they aromatic chameleons? J Am Chem Soc 126:13938–13939Google Scholar
  11. 11.
    Rosenberg M, Dahlstrand C, Kilså K, Ottosson H (2014) Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem Rev 114:5379–5425Google Scholar
  12. 12.
    Guareschi R, Zulfikri H, Daday C et al. (2016) Introducing QMC/MMpol: quantum Monte Carlo in polarizable force fields for excited states. J Chem Theory Comput 12:1674–1683Google Scholar
  13. 13.
    Serrano-Andrés L, Pou-Amérigo R, Fülscher MP, Borin AC (2002) Electronic excited states of conjugated cyclic ketones and thioketones: a theoretical study. J Chem Phys 117:1649Google Scholar
  14. 14.
    Racine J, Hagebaum-Reignier D, Carissan Y, Humbel S (2016) Recasting wave functions into valence bond structures: a simple projection method to describe excited states. J Comput Chem 37:771–779Google Scholar
  15. 15.
    Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  16. 16.
    Chen Z, Ying F, Chen X et al (2015) XMVB 2.0: a new version of Xiamen valence bond program. Int J Quantum Chem 115:731–737Google Scholar
  17. 17.
    Hiberty PC, Humbel S, Byrman CP, van Lenthe JH (1994) Compact valence bond functions with breathing orbitals: application to the bond dissociation energies of F2 and FH. J Chem Phys 101:5969–5976CrossRefGoogle Scholar
  18. 18.
    Hiberty PC, Shaik SS (2002) Breathing-orbital valence bond method—a modern valence bond method that includes dynamic correlation. Theor Chim Acta 108:255–272CrossRefGoogle Scholar
  19. 19.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J Comput Chem 4:294–301CrossRefGoogle Scholar
  20. 20.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  21. 21.
    Norden TD, Staley SW, Taylor WH, Harmony MD (1986) Electronic character of methylenecyclopropene: microwave spectrum, structure, and dipole moment. J Am Chem Soc 108:7912–7918CrossRefGoogle Scholar
  22. 22.
    Merchant M, González-Luque R, Roos BO (1996) A theoretical determination of the electronic spectrum of methylenecyclopropene. Theor Chim Acta 94:143–154Google Scholar
  23. 23.
    Cammi R, Frediani L, Mennucci B et al. (2002) A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J Chem Phys 117:13–26CrossRefGoogle Scholar
  24. 24.
    Cammi R, Fukuda R, Ehara M, Nakatsuji H (2010) Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: theory of the solvent effect on the electronic excitation of molecules in solution. J Chem Phys 133:024104Google Scholar
  25. 25.
    Solà M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem. doi: 10.3389/fchem.2013.00022 Google Scholar
  26. 26.
    Khatmi D, Carissan Y, Hagebaum-Reignier D et al. (2016) Mesomerism, ring & substituent effects, a computational chemistry experiment. J Lab Chem Educ 4:25–34Google Scholar
  27. 27.
    Carissan Y, Hagebaum-Reignier D, Goudard N, Humbel S (2008) Hückel-Lewis projection method: a “weights watcher” for mesomeric structures. J Phys Chem A 112:13256–13262Google Scholar
  28. 28.
    Chirgwin BH, Coulson CA (1950) The electronic structure of conjugated systems. VI. Proc R Soc Lond Math Phys Eng Sci 201:196–209Google Scholar
  29. 29.
    Thorsteinsson T, Cooper DL (1998) Nonorthogonal weights of modern VB wave functions. Implementation and applications within CASVB. J Math Chem 23:105–126CrossRefGoogle Scholar
  30. 30.
    Norbeck JM, Gallup GA (1974) Valence-bond calculation of the electronic structure of benzene. J Am Chem Soc 96:3386–3393CrossRefGoogle Scholar
  31. 31.
    Scott AP, Agranat I, Biedermann PU et al (1997) Fulvalenes, fulvenes, and related molecules: an ab initio study. J Org Chem 62:2026–2038Google Scholar
  32. 32.
    Carissan Y, Goudard N, Hagebaum-Reignier D, Humbel S (2016) Localized structures at the Hückel level, a Hückel-derived valence bond method. Appl Topol Methods Mol Chem 22:337–360Google Scholar
  33. 33.
    Baird NC (1972) Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3. pi. pi.* state of cyclic hydrocarbons. J Am Chem Soc 94:4941–4948CrossRefGoogle Scholar
  34. 34.
    Tognetti V, Morell C, Joubert L (2015) Quantifying electro/nucleophilicity by partitioning the dual descriptor. J Comput Chem 36:649–659CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313MarseilleFrance
  2. 2.Université Tahar Moulay de Saida, Laboratoire de Modélisation et de Méthodes de CalculSaidaAlgérie

Personalised recommendations