Advertisement

Journal of Molecular Modeling

, 22:300 | Cite as

Molecular dynamics simulations of the orientation properties of cytochrome c on the surface of single-walled carbon nanotubes

  • Bing ZhangEmail author
  • Jia Xu
  • Shu-Fan Mo
  • Jian-Xi Yao
  • Song-Yuan DaiEmail author
Original Paper

Abstract

Electron transfer between cytochrome c (Cytc) and electrodes can be influenced greatly by the orientation of protein on the surface of the electrodes. In the present study, different initial orientations of Cytc on the surface of five types of single-walled carbon nanotubes (SWNTs), with different diameters and chirality, were constructed. Properties of the orientations of proteins on the surface of these tubes were first investigated through molecular dynamics simulations. It was shown that variations in SWNT diameter do not significantly affect the orientation; however, the chirality of the SWNTs is crucial to the orientation of the heme embedded in Cytc, and the orientation of the protein can consequently be influenced by the heme orientation. A new electron pathway between Cytc and SWNT, which hopefully benefits electron transfer efficiency, has also been proposed. This study promises to provide theoretical guidance for the rational design of bio-sensors or bio-fuel cells by using Cytc-decorated carbon nanotube electrodes.

Keywords

Single-walled carbon nanotube Cytochrome c Molecular dynamics simulation Carbon nanotube chirality 

Notes

Acknowledgements

The authors wish to acknowledge the financial support of the National Natural Science Foundation of China (21303049), the National Key Basic Research Program of China (973 Program) (2015CB932201) and the Fundamental Research Funds for the Central Universities (2015ZZD06).

References

  1. 1.
    Tarlov MJ, Bowden EF (1991) Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes. J Am Chem Soc 113(5):1847–1849CrossRefGoogle Scholar
  2. 2.
    Collinson M, Bowden EF, Tarlov MJ (1992) Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes. Langmuir 8(5):1247–1250CrossRefGoogle Scholar
  3. 3.
    Song S, Clark RA, Bowden EF, Tarlov MJ (1993) Characterization of cytochrome c/ alkanethiolate structures prepared by self-assembly on gold. J Phys Chem 97(24):6564–6572CrossRefGoogle Scholar
  4. 4.
    Leopold MC, Bowden EF (2002) Influence of gold substrate topography on the voltammetry of cytochrome c adsorbed on carboxylic acid terminated self-assembled monolayers. Langmuir 18(6):2239–2245CrossRefGoogle Scholar
  5. 5.
    Gao Y, Kyratzis I (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—a critical assessment. Bioconjugat Chem 19(10):1945–1950CrossRefGoogle Scholar
  6. 6.
    Avila A, Gregory BW, Niki K, Cotton TM (2000) An electrochemical approach to investigate gated electron transfer using a physiological model system: cytochrome c immobilized on carboxylic acid-terminated alkanethiol self-assembled monolayers on gold electrodes. J Phys Chem B 104(12):2579–2766CrossRefGoogle Scholar
  7. 7.
    Dick LA, Haes AJ, Van Duyne RP (2000) Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes. J Phys Chem B 104(49):11752–11762CrossRefGoogle Scholar
  8. 8.
    Chen XX, Ferrigno R, Yang J, Whitesides GM (2002) Redox properties of cytochrome c adsorbed on self-assembled monolayers: a probe for protein conformation and orientation. Langmuir 18(18):7009–7015CrossRefGoogle Scholar
  9. 9.
    Salazar-Salinas K, Kubli-Garfias C, Seminario JM (2013) Computational design of a CNT carrier for a high affinity bispecific anti-HER2 antibody based on trastuzumab and pertuzumab Fabs. J Mol Model 19(7):2797–2810CrossRefGoogle Scholar
  10. 10.
    Ajori S, Ansari R, Darvizeh M (2016) On the vibrational behavior of single-and double-walled carbon nanotubes under the physical adsorption of biomolecules in the aqueous environment: a molecular dynamics study. J Mol Model 22(3):1–8CrossRefGoogle Scholar
  11. 11.
    Rajarajeswari M, Iyakutti K, Kawazoe Y (2011) Adsorption mechanism of single guanine and thymine on single-walled carbon nanotubes. J Mol Model 17(11):2773–2780CrossRefGoogle Scholar
  12. 12.
    Ansari R, Ajori S, Rouhi S (2015) Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes. J Mol Model 21(12):1–11CrossRefGoogle Scholar
  13. 13.
    Bobadilla A, Seminario JM (2012) Self-assembly of DNA on a gapped carbon nanotube. J Mol Model 18(7):3291–3300CrossRefGoogle Scholar
  14. 14.
    Zhou J, Zheng J, Jiang SY (2004) Molecular simulation studies of the orientation and conformation of cytochrome c adsorbed on self-assembled monolayers. J Phys Chem B 108(45):17418–17424CrossRefGoogle Scholar
  15. 15.
    Xu WS, Zhou H, Regnier FE (2003) Regio-specific adsorption of cytochrome c on negatively charged surfaces. Anal Chem 75(8):1931–1940CrossRefGoogle Scholar
  16. 16.
    Khoshtariya DE, Wei JJ, Liu HY, Yue HJ, Waldeck DH (2003) Charge-transfer mechanism for cytochrome c adsorbed on nanometer thick films. Distinguishing frictional control from conformational gating. Am Chem Soc 125(25):7704–7714CrossRefGoogle Scholar
  17. 17.
    Nepal D, Geckeler KE (2006) pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2(3):406–412CrossRefGoogle Scholar
  18. 18.
    Karajanagi SS, Vertegel AA, Kane RS, Oordick JS (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20(26):11594–11599CrossRefGoogle Scholar
  19. 19.
    Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 100(9):4984–4989CrossRefGoogle Scholar
  20. 20.
    Wei JJ, Liu HY, Khoshtariya DE, Yamamoto H, Dick A, Waldeck DH (2002) Electron-transfer dynamics of cytochrome c: a change in the reaction mechanism with distance. Angew Chem Int Ed 41(24):4700–4703CrossRefGoogle Scholar
  21. 21.
    Chen J, Bao J, Cai CX, Lu TH (2004) Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode. Anal Chim Acta 516(1–2):29–34Google Scholar
  22. 22.
    Chen J, Cai CX (2004) Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode. Chin J Chem 22(2):167–171CrossRefGoogle Scholar
  23. 23.
    Musameh M, Wang J, Merkoci A, Yin Y (2004) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4(10):743–746CrossRefGoogle Scholar
  24. 24.
    Chicharro M, Sánchez A, Bermejo E, Zapardiel A, Rubianes MD, Rivas GA (2005) Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Anal Chim Acta 543(1–2):84–91CrossRefGoogle Scholar
  25. 25.
    Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenergy 41(1):121–125CrossRefGoogle Scholar
  26. 26.
    Chen J, Bao J, Cai CX (2003) Fabrication, characterization and electrocatalysis of an ordered carbon nanotube electrode. Chin J Chem 21(6):665–669Google Scholar
  27. 27.
    Liang Q, Wang Y, Luo G, Wang Z (2003) Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540(2):129–134Google Scholar
  28. 28.
    Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive biosening of trichloroacetic acid. J Am Chem Soc 125(9):2408–2409CrossRefGoogle Scholar
  29. 29.
    Salimi A, Compton RG, Hallaj R (2004) Glucose biosensor prepared by glucose oxidase encapsulated sol–gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem 333(1):49–56CrossRefGoogle Scholar
  30. 30.
    Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5(8):689–694CrossRefGoogle Scholar
  31. 31.
    Yin YJ, Wu P, Lv YF, Du P, Shi YM, Cai CX (2007) Immobilization and direct electrochemistry of cytochrome c at a single-walled carbon nanotube-modified electrode. J Solid State Electrochem 11:390–397CrossRefGoogle Scholar
  32. 32.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Comm 91(09):43–56CrossRefGoogle Scholar
  33. 33.
    Hess B, Kutzner C, van der Spoel D, Lindahl G (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRefGoogle Scholar
  34. 34.
    Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105(41):9980–9987CrossRefGoogle Scholar
  35. 35.
    Zou J, Ji B, Feng X-Q, Gao H (2006) Self-assembly of single-walled carbon nanotubes into multi walled carbon nanotubes in water: molecular dynamics simulations. Nano Lett 6(3):430–434CrossRefGoogle Scholar
  36. 36.
    Johnson RR, Johnson ATC, Klein ML (2010) The nature of DNA-base–carbon-nanotube interactions. Small 6(1):31–34CrossRefGoogle Scholar
  37. 37.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  38. 38.
    Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods R (2005) The Amber biomolecular simulation programs. J Computat Chem 26:1668–1688CrossRefGoogle Scholar
  39. 39.
    Darden TD, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRefGoogle Scholar
  40. 40.
    Vardanega D, Picaud F, Girardet C (2007) Chiral response of single walled carbon nanotube based sensors to adsorption of amino acids: a theoretical model. J Chem Phys 127:194702CrossRefGoogle Scholar
  41. 41.
    Zheng LF, Jain D, Burke P (2009) Nanotube-peptide interactions on a silicon chip. J Phys Chem 113(10):3978–3985Google Scholar
  42. 42.
    Wei CY (2006) Radius and chirality dependent conformation of polymer molecule at nanotube interface. NanoLett 6(8):1627–1631CrossRefGoogle Scholar
  43. 43.
    Liu J, Zhao L, Lv ZY, Li ZS (2008) Molecular dynamics simulation of adsorption of a polyethylene chain on carbon nanotube. Chem J Chinese U 29(12):2389–2392Google Scholar
  44. 44.
    Liu YZ, Cai WS, Shao XG (2012) Molecular dynamics simulation of hydrophobin proteins on the surface of single-walled carbon nanotubes. Chem J Chinese U 33(9):2013–2018Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijingChina
  2. 2.Beijing Key Laboratory of New Thin Film Solar CellsNorth China Electric Power UniversityBeijingChina

Personalised recommendations