Advertisement

Journal of Molecular Modeling

, 22:288 | Cite as

Acute aquatic toxicity of organic solvents modeled by QSARs

  • A. Levet
  • C. Bordes
  • Y. Clément
  • P. Mignon
  • C. Morell
  • H. Chermette
  • P. Marote
  • P. Lantéri
Original Paper
Part of the following topical collections:
  1. Festschrift in Honor of Henry Chermette

Abstract

To limit in vivo experiments, the use of quantitative structure-activity relationships (QSARs) is advocated by REACH regulation to predict the required fish, invertebrate, and algae EC50 for chemical registration. The aim of this work was to develop reliable QSARs in order to model both invertebrate and algae EC50 for organic solvents, regardless of the mechanism of toxic action involved. EC50 represents the concentration producing the 50 % immobilization of invertebrates or the 50 % growth inhibition of algae. The dataset was composed of 122 organic solvents chemically heterogeneous which were characterized by their invertebrate and/or algae EC50. These solvents were described by physico-chemical descriptors and quantum theoretical parameters calculated via density functional theory. QSAR models were developed by multiple linear regression using the ordinary least squares method and descriptor selection was performed by the Kubinyi function. Invertebrate EC50 was well-described with LogP, dielectric constant, surface tension, and minimal atomic Mulliken charges while algae EC50 of organic solvents (except amines) was predicted with LogP and LUMO energy. To evaluate robustness and predictive performance of the QSARs developed, several strategies have been used to select solvent training sets (random, EC50-based selection and a space-filling design) and both internal and external validations were performed.

Keywords

Algae EC50 DFT ECOSAR Ecotoxicity Invertebrate EC50 Organic solvents QSAR 

Notes

Acknowledgments

This study was supported by the National Research Agency (ANR) within the project NESOREACH. The authors also gratefully acknowledge L. Geoffroy, L. Chancerelle and P. Pandard from the INERIS Institut.

Supplementary material

894_2016_3156_MOESM_ESM.docx (26 kb)
ESM 1 (DOCX 25.8 kb)

References

  1. 1.
    Regulation No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Official J. of the European Union, L396/1-849, European Commission, Brussels, BelgiumGoogle Scholar
  2. 2.
    Technical Guidance Document (TGD) on the Risk Assessment in support of the Commission directive 93/67/EEC on Risk Assessment for New Notified Substances, the Commission Regulation No 1488/94 on risk Assessment for Existing Substances and the Directive 98/8/EC concerning the placing of biocidal products on the market. Institute for health and consumer protection, European chemicals Bureau, LuxembourgGoogle Scholar
  3. 3.
    Working document. Guidance Document on Aquatic Ecotoxicology in the context of the Directive 91/414/ECC. European Commission, Health & Consumer protection directorate-generaleGoogle Scholar
  4. 4.
    Katritzky AR, Lobanov VS, Karelson M (1995) QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chem Soc Rev 24:279–287CrossRefGoogle Scholar
  5. 5.
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476–488CrossRefGoogle Scholar
  6. 6.
    Konemann H (1981) Quantitative structure-activity relationships in fish toxicity studies. Part 1: relationship for 5 industrial pollutants. Toxicology 19:209–221Google Scholar
  7. 7.
    Mazzatorta P, Vračko M, Jezierska A, Benfenati E (2003) Modeling toxicity by using supervised Kohonen neural networks. J Chem Inf Comput Sci 43:485–492CrossRefGoogle Scholar
  8. 8.
    Katritzky AR, Slavovn SH, Stoyanova-Slavova S, Kahn I, Karelson M (2009) Quantitative structure-activity relationships (QSAR) modeling of EC50 of aquatic toxicities for Daphnia magna. J Toxicol Environ Health Part A 72:1181–1190CrossRefGoogle Scholar
  9. 9.
    Toropova AP, Toropov AA, Benfenati E, Gini G (2012) QSAR models for toxicity of organic substances to Daphnia magna built up by using the CORAL Freeware. Chem Biol Drug Des 79:332–338CrossRefGoogle Scholar
  10. 10.
    Hsieh SH, Hsu CH, Tsai DY, Chen CY (2006) Quantitative structure-activity relationships for toxicity of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Environ Toxicol Chem 25:2920–2926CrossRefGoogle Scholar
  11. 11.
    Lu G, Wang C, Tang Z, Guo X (2007) Joint toxicity of aromatic compounds to algae and QSAR study. Ecotoxicology 16:485–490CrossRefGoogle Scholar
  12. 12.
    Kar S, Roy K (2010) QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors. J Hazard Mater 177:834–840CrossRefGoogle Scholar
  13. 13.
    Lee PY, Chen CY (2009) Toxicity and quantitative structure-activity relationships of benzoic acids to Pseudokirchneriella sucapitata. J Hazard Mater 165:156–161CrossRefGoogle Scholar
  14. 14.
    Faucon JC, Bureau R, Faisant J, Briens F, Rault S (2001) Prediction of the Daphnia acute toxicity from heterogeneous data. Chemosphere 44:407–422CrossRefGoogle Scholar
  15. 15.
    Moosus M, Maran U (2011) Quantitative structure-activity relationships analysis of acute toxicity of diverse chemicals to Daphnia magna with whole molecule descriptors. SAR QSAR Environ Res 22:57–774CrossRefGoogle Scholar
  16. 16.
    Kamaya Y, Fukaya Y, Suzuki K (2005) Acute toxicity of benzoic acids to the crustacean Daphnia magna. Chemosphere 59:255–261CrossRefGoogle Scholar
  17. 17.
    Chen CY, Kuo KL, Fan JW (2012) Toxicity of propargylic alcohols on green alga Pseudokirchneriella subcapitata. J Mol Struct 14:181–186Google Scholar
  18. 18.
    Zeng M, Lin Z, Yin D, Zhang Y, Kong D (2011) A K(ow)-based QSAR model for predicting toxicity of halogenated benzenes to all algae regardless of species. Bull Environ Contam Toxicol 86:565–570CrossRefGoogle Scholar
  19. 19.
    Passino-Reader DR, Hickey JP, Ogilvie LM (1997) Toxicity to Daphnia pulex and QSAR predictions for polycyclic hydrocarbons representative of Great Lake contaminants. Bull Environ Contam Toxicol 59:834–840CrossRefGoogle Scholar
  20. 20.
    Lee YG, Hwang SH, Kim SD (2006) Predicting the toxicity of substituted phenols to aquatic species and its changes in the stream and effluent waters. Arch Environ Contam Toxicol 50:213–219CrossRefGoogle Scholar
  21. 21.
    Lessigiarska I, Worth AP, Sohull-Klüttgen B, Jeram S, Dearden JC, Netzeva TI, Cronin MTP (2004) QSAR investigation of a large data set for fish, algae, and daphnia toxicity. SAR QSAR Environ Res 15:413–431CrossRefGoogle Scholar
  22. 22.
    Voutchkova VM, Kostal J, Steinfeld JB, Emerson JW, Brooks BW, Anastas P, Zimmerman JB (2011) Towards rational molecular design: derivation of property guidelines for reduced acute aquatic toxicity. Green Chem 13:2373–2379CrossRefGoogle Scholar
  23. 23.
    Niculescu SP, Lewis MA, Tigner J (2008) Probabilistic neural networks modeling of the 48-h LC50 acute toxicity endpoint to Daphnia magna. SAR QSAR Environ Res 19:735–750CrossRefGoogle Scholar
  24. 24.
    Tao S, Xiaohuan X, Fuliu X, Bengang L, Cao J, Dawson R (2002) A fragment constant QSAR model for evaluating the EC50 values of organic chemicals to Daphnia magna. Environ Sci Technol 45:4616–4622Google Scholar
  25. 25.
    Toropova AP, Toropov AA, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynska J (2012) CORAL: QSAR modeling of toxicity of organic chemicals toward Daphnia magna. Intell Lab Syst 110:177–181CrossRefGoogle Scholar
  26. 26.
    Levet A, Bordes C, Clément Y, Mignon P, Chermette H, Marote P, Cren-Olivé C, Lantéri P (2013) Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents. Chemosphere 93:1094–1103CrossRefGoogle Scholar
  27. 27.
    Chastrette M, Rajzmann M, Chanon M, Purcell KF (1985) Approach to a general classification of solvents using a multivariate statistical treatment of quantification solvent parameters. J Am Chem Soc 107:1–11CrossRefGoogle Scholar
  28. 28.
    Durand M, Molinier V, Kunz W, Aubry JM (2011) Classification of organic solvents revisited by using the COSMO-RS approach. Chem Eur J 17:5155–5164CrossRefGoogle Scholar
  29. 29.
    Cheremisinoff NP (2003) Industrial solvents handbooks, second edn. CRC, Boca RatonGoogle Scholar
  30. 30.
    Smallwood I (1996) Handbook of organic solvent properties. ArnoldGoogle Scholar
  31. 31.
    Yalkowxky SH, He Y, Jain P (2010) Handbook of aqueous solubility data, second edn. CRC, Boca RatonGoogle Scholar
  32. 32.
    Yaws CL (1999) Chemical properties handbook. McGraw-Hill, New YorkGoogle Scholar
  33. 33.
    Weast RC (1975) Handbooks of chemistry and physics, 56th edn. CRC, Boca RatonGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  35. 35.
    Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20CrossRefGoogle Scholar
  36. 36.
    Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404CrossRefGoogle Scholar
  37. 37.
    Randić M (1975) On characterizaztion of molecular branching. J Am Chem Soc 97:6609–6611CrossRefGoogle Scholar
  38. 38.
    Kier LB (1989) An index of molecular flexibility from kappa shape attributes. Quant Struct –Act Relat 8:221–224CrossRefGoogle Scholar
  39. 39.
    Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2008) Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories. Chemom Intell Lab Syst 92:138–144CrossRefGoogle Scholar
  40. 40.
    Kubinyi H (1994) Variable selection in QSAR studies. I. An evolutionary algorithm. Quant Struct-Act Relat 13:285–294Google Scholar
  41. 41.
    Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximim distance designs. J Stat Plan Int 26:131–148CrossRefGoogle Scholar
  42. 42.
    Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51:2320–2335CrossRefGoogle Scholar
  43. 43.
    Chirico N, Gramatica P (2012) Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J Chem Inf Model 52:2044–2058CrossRefGoogle Scholar
  44. 44.
    Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair RM, Branham WS, Dial SL, Moland CL, Sheehan DM (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci 41:186–195CrossRefGoogle Scholar
  45. 45.
    Schüürmann G, Ebert RU, Chen J, Wang B, Kühne R (2008) External validation and prediction employing the predictive squared correlation coefficient—Test set activity mean vs training set activity mean. J Chem Inf Model 48:2140–2145Google Scholar
  46. 46.
    Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q2 parameter for QSAR Validation. J Chem Inf Model 49:1669–1678CrossRefGoogle Scholar
  47. 47.
    Consonni V, Ballabio D, Todeschini R (2010) Evaluation of model predicitive ability by external validation techniques. J Chemometrics 24:194–201CrossRefGoogle Scholar
  48. 48.
    Roy PP, Paul S, Mitra I, Roy K (2009) On-two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701CrossRefGoogle Scholar
  49. 49.
    Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408CrossRefGoogle Scholar
  50. 50.
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276CrossRefGoogle Scholar
  51. 51.
    Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRefGoogle Scholar
  52. 52.
    OECD (2007) Series on testing and assessment. Number 69. Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] modelsGoogle Scholar
  53. 53.
    OECD (2004) Series on testing and assessment. Number 49. The report from the expert group on QSARs on the principles for the validation of QSARsGoogle Scholar
  54. 54.
    Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for Applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375CrossRefGoogle Scholar
  55. 55.
    Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701CrossRefGoogle Scholar
  56. 56.
    Voutchkova AM, Osimitz TG, Anastas PT (2010) Toward a comprehensive molecular design framework for reduced hazard. Chem Rev 110:5845–5882CrossRefGoogle Scholar
  57. 57.
    Cronin MTD, Walker JD, Jaworska JS, Comber MHI, Watts CD, Worth AP (2003) Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111:1376–1390CrossRefGoogle Scholar
  58. 58.
    Reuschenbach P, Silvani M, Dammann M, Warnecke D, Knacker T (2008) ECOSAR model performance with a large test set of industrial chemicals. Chemosphere 71:1986–1995CrossRefGoogle Scholar
  59. 59.
    Tunkel J, Mayo K, Austin C, Hickerson A, Howard P (2005) Practical considerations on the use of predictive models for regulatory purposes. Environ Sci Technol 39:2188–2199CrossRefGoogle Scholar
  60. 60.
    Parkerton TF, Konkel WJ (2000) Application of quantitative structure-activity relationships for assessing the aquatic toxicity of phthalate esters. Ecotoxicol Environ Saf 45:61–78CrossRefGoogle Scholar
  61. 61.
    Hodges G, Roberts DW, Marshall SJ, Dearden JC (2006) The aquatic toxicity of anionic surfactants to Daphnia magna—a comparative QSAR study of linear alkylbenzene sulphonates and ester sulphonates. Chemosphere 63:1443–1450Google Scholar
  62. 62.
    Buth JM, Arnold WA, McNeill K (2007) Unexpected products and reaction mechanisms of the aqueous chlorination of cimetidine. Environ Sci Technol 41:6228–6233CrossRefGoogle Scholar
  63. 63.
    Tremolada P, Finizio A, Villa S, Gaggi C, Vighi M (2004) Quantitative inter-specific chemical activity relationships of pesticides in the aquatic environment. Aquat Toxicol 67:87–103CrossRefGoogle Scholar
  64. 64.
    Zhang XJ, Qin HW, Su LM, Qin WC, Zou MY, Sheng LX, Zhao YH, Abraham MH (2010) Interspecies correlations of toxicity to eight aquatic organisms: theoretical considerations. Sci Total Environ 408:4549–4555CrossRefGoogle Scholar
  65. 65.
    Netzeva TI, Aptula AO, Benfenati E, Cronin MTD, Gini G, Lessaigiarska I, Maran U, Vračko M, Schüürmann G (2005) Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs. J Chem Inf Model 45:106–114CrossRefGoogle Scholar
  66. 66.
    Henegar A, Mombelli E, Pandard P, Péry ARR (2011) What can be learnt from an ecotoxicity database in the framework of the REACh regulation? Sci Total Environ 409:489–494CrossRefGoogle Scholar
  67. 67.
    Tebby C, Mombelli E, Pandard P, Péry ARR (2011) Exploring an ecotoxicity database with the OCDE (Q)SAR Toolbox and DRAGON descriptors in order to priorise testing on algae, daphids and fish. Sci Total Environ 409:3334–3343CrossRefGoogle Scholar
  68. 68.
    Christensen AM, Faaborg-Andersen S, Ingerslev F, Baun A (2007) Mixture and single- substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. Environ Toxicol Chem 26:85–91CrossRefGoogle Scholar
  69. 69.
    Escher BI, Bramaz N, Richter I, Lienert J (2006) Comparative ecotoxicological hazard assessment of Beta-flockers and their human metabolites using a mode-of-action based test battery and a QSAR approach. Environ Sci Technol 40:7402–7408CrossRefGoogle Scholar
  70. 70.
    Von der Ohe PC, Kühne R, Ebert R-U, Alterburger R, Liess M, Schüürmann G (2005) Structural alerts- a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnids assay. Chem Res Toxicol 18:535–555Google Scholar
  71. 71.
    Papa E, Villa F, Gramatica P (2005) Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J Chem Inf Model 45:1256–1566CrossRefGoogle Scholar
  72. 72.
    Neuwoehner J, Escher BI (2011) The pH-dependent toxicity of basic pharmaceuticals in the green algae Scendesmus vacuolatus can be explained with a toxicokinetic ion- trapping model. Aquat Toxicol 101:266–275CrossRefGoogle Scholar
  73. 73.
    Huang CP, Wang Y-J, Chen C-Y (2007) Toxicity and quantitative structure activity relationships of nitriles based on Pseudokirchneriella sucapitata. Ecotoxicol Environ Saf 67:439–446CrossRefGoogle Scholar
  74. 74.
    Lu G-H, Yuan X, Zhao Y-H (2001) QSAR study on the toxicity of substituted benzenes to the algae (Scenedesmus obliquus). Chemosphere 44:437–440CrossRefGoogle Scholar
  75. 75.
    Schmitt H, Alterburger R, Jastorff B, Schüürmann G (2000) Quantitative Structure-activity analysis of the algae toxicity of nitroaromatic compounds. Chem Res Toxicol 13:441–450CrossRefGoogle Scholar
  76. 76.
    Zhu M, Ge F, Zhu R, Wang X, Zheng X (2010) A DFT based QSAR study of the toxicity of quaternary ammonimum compounds on Chlorella vulgaris. Chemosphere 80:46–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Levet
    • 1
  • C. Bordes
    • 1
  • Y. Clément
    • 1
  • P. Mignon
    • 1
  • C. Morell
    • 1
  • H. Chermette
    • 1
  • P. Marote
    • 1
  • P. Lantéri
    • 1
  1. 1.Université Claude Bernard Lyon 1, Institut des Sciences AnalytiquesUniversité de LyonVilleurbanneFrance

Personalised recommendations