Journal of Molecular Modeling

, 22:289 | Cite as

Anchoring groups for dyes in p-DSSC application: insights from DFT

  • Michael Wykes
  • Fabrice Odobel
  • Carlo Adamo
  • Ilaria Ciofini
  • Frédéric LabatEmail author
Original Paper
Part of the following topical collections:
  1. Festschrift in Honor of Henry Chermette


We present hybrid, periodic, spin-polarized density functional theory calculations of antiferromagnetic NiO bulk, of its clean (100) surface and of the binding on this latter of four different organic ligands, relevant for p-type dye-sensitized solar cells (p-DSSC) applications. We find evidence for a strong chemisorption of all ligands to the NiO surface in the form of short interatomic distances between surface Ni atoms and ligand atoms, confirmed by high binding energies. Although the analysis of the impact of the ligand adsorption on the density of states of the NiO substrate reveals significant modifications, the overall picture obtained is in line with the operation principles of p-DSSC in all cases. However, some of the considered ligands significantly shift the density of states to lower energies, which, in p-DSSCs employing these ligands to anchor dyes to NiO, could force the use of dyes with deeper HOMO energies and alternative redox couples capable of accepting electrons from the dye (assuming dye bandgaps in the UV/visible range).


p-DSSC DFT NiO PBC Crystal 



ANR is gratefully acknowledged for the financial support of this research through the program POSITIF (ANR-12-PRGE-0016-01). This work was granted access to the HPC resources of MesoPSL financed by the Région Ile-de-France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the program Investissements d’Avenir supervised by the Agence Nationale pour la Recherche.

Supplementary material

894_2016_3155_MOESM1_ESM.pdf (436 kb)
(PDF 436 KB)


  1. 1.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  3. 3.
    Mathew S, Yella A, Gao P, Humphry-Baker R, CF E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Khaja N, Grätzel M (2014) Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247CrossRefGoogle Scholar
  4. 4.
    Kakiage K, Aoyama Y, Yano T, Oya K, Ji Fujisawa, Hanaya M (2015) Highly efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897CrossRefGoogle Scholar
  5. 5.
    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–1237CrossRefGoogle Scholar
  6. 6.
    Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena JP, Gao P, Scopelliti R, Mosconi E, Dahmen KH, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat Energy 1:15017EP –Google Scholar
  7. 7.
    Li X, Bi D, Yi C, Décoppet J D, Luo J, Zakeeruddin S M, Hagfeldt A, Grätzel M (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science. doi: 10.1126/science.aaf8060
  8. 8.
    Wang D, Wright M, Elumalai N K, Uddin A (2016) Stability of perovskite solar cells. Solar Energy Mater Solar Cells 147:255–275CrossRefGoogle Scholar
  9. 9.
    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356CrossRefGoogle Scholar
  10. 10.
    He J, Lindstrm H, Hagfeldt A, Lindquist S E (2000) Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Solar Energy Mater Solar Cells 62:265–273CrossRefGoogle Scholar
  11. 11.
    Odobel F, Pellegrin Y (2013) Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. J Phys Chem Lett 4:2551–2564CrossRefGoogle Scholar
  12. 12.
    He J, Lindström H, Hagfeldt A, Lindquist S E (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103:8940–8943CrossRefGoogle Scholar
  13. 13.
    Perera I R, Daeneke T, Makuta S, Yu Z, Tachibana Y, Mishra A, Bäuerle P, Ohlin C A, Bach U, Spiccia L (2015) Application of the tris(acetylacetonato)iron(iii)/(ii) redox couple in p-type dye-sensitized solar cells. Angew Chem Int Ed 54:3758–3762CrossRefGoogle Scholar
  14. 14.
    Odobel F, Pleux L L, Pellegrin Y, Blart E (2010) New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Accounts Chem Res 43:1063–1071CrossRefGoogle Scholar
  15. 15.
    Labat F, Bahers T L, Ciofini I, Adamo C (2012) First-principles modeling of dye-sensitized solar cells: challenges and perspectives. Accounts Chem Res 45:1268–1277CrossRefGoogle Scholar
  16. 16.
    Angelis F D (2014) Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. Accounts Chem Resx 47:3349–3360CrossRefGoogle Scholar
  17. 17.
    Labat F, Ciofini I, Adamo C (2012) Revisiting the importance of dye binding mode in dye-sensitized solar cells: a periodic viewpoint. J Mater Chem 22:12205–12211CrossRefGoogle Scholar
  18. 18.
    Muñoz Garcia A B, Pavone M (2015) Structure and energy level alignment at the dye–electrode interface in p-type DSSCs: new hints on the role of anchoring modes from ab initio calculations. Phys Chem Chem Phys 17:12238–12246CrossRefGoogle Scholar
  19. 19.
    Labat F, Adamo C (2007) Bi-isonicotinic acid on anatase (101): insights from theory. J Phys Chem C 111:15034CrossRefGoogle Scholar
  20. 20.
    Bahers T L, Pauporté T, Labat F, Lefèvre G, Ciofini I (2011) Acetylacetone, an interesting anchoring group for ZnO-based organic-inorganic hybrid materials: a combined experimental and theoretical study. Langmuir 27:3442–3450CrossRefGoogle Scholar
  21. 21.
    Renaud A, Chavillon B, Le Pleux L, Pellegrin Y, Blart E, Boujtita M, Pauporte T, Cario L, Jobic S, Odobel F (2012) CuGaO2: a promising alternative for NiO in p-type dye solar cells. J Mater Chem 22:14353–14356CrossRefGoogle Scholar
  22. 22.
    Yu M, Natu G, Ji Z, Wu Y (2012) p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J Phys Chem Lett 3:1074–1078CrossRefGoogle Scholar
  23. 23.
    Prevot M S, Li Y, Guijarro N, Sivula K (2016) Improving charge collection with delafossite photocathodes: a host–guest CuAlO2/CuFeO2 approach. J Mater Chem A 4:3018–3026CrossRefGoogle Scholar
  24. 24.
    Jiang T, Bujoli-Doeuff M, Farre Y, Blart E, Pellegrin Y, Gautron E, Boujtita M, Cario L, Odobel F, Jobic S (2016) Copper borate as a photocathode in p-type dye-sensitized solar cells. RSC Adv 6:1549–1553CrossRefGoogle Scholar
  25. 25.
    Renaud A, Cario L, Pellegrin Y, Blart E, Boujtita M, Odobel F, Jobic S (2015) The first dye-sensitized solar cell with p-type LaOCuS nanoparticles as a photocathode. RSC Adv 5:60148–60151CrossRefGoogle Scholar
  26. 26.
    Pacchioni G, Valentin C D, Dominguez-Ariza D, Illas F, Bredow T, Klüner T, Staemmler V (2004) Bonding of NH3, CO, and NO to NiO and Ni-doped MgO: a problem for density functional theory. J Phys Condens Matter 16:S2497CrossRefGoogle Scholar
  27. 27.
    Ferrari A M, Pisani C (2006) An ab initio periodic study of NiO supported at the Pd(100) surface. part 1: the perfect epitaxial monolayer. J Phys Chem B 110:7909–7917CrossRefGoogle Scholar
  28. 28.
    Wang W, Li J, Zhang Y (2006) The orbital interaction of adsorbed CO on NiO (001;111) surface: a periodic density functional theory study. Appl Surf Sci 252:2673–2683CrossRefGoogle Scholar
  29. 29.
    Yu N, Zhang W B, Wang N, Wang Y F, Tang B Y (2008) Water adsorption on a NiO(100) surface: A GGA+U study. J Phys Chem C 112:452–457CrossRefGoogle Scholar
  30. 30.
    Zhang X, Li X, Qin W (2009) Investigation of the catalytic activity for ozonation on the surface of NiO nanoparticles. Chem Phys Lett 479:310 –315CrossRefGoogle Scholar
  31. 31.
    Ferrari A M, Pisani C, Cinquini F, Giordano L, Pacchioni G (2007) Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations. J Chem Phys 127:174711CrossRefGoogle Scholar
  32. 32.
    Cinquini F, Giordano L, Pacchioni G, Ferrari A M, Pisani C, Roetti C (2006) Electronic structure of NiO/Ag(100) thin films from DFT+U and hybrid functional DFT approaches. Phys Rev B 74:165403CrossRefGoogle Scholar
  33. 33.
    Kumar P V, Short M P, Yip S, Yildiz B, Grossman J C (2012) First-principles assessment of the reactions of boric acid on NiO(001) and ZrO2(\(\bar 1\)11) surfaces. J Phys Chem C 116:10113–10119CrossRefGoogle Scholar
  34. 34.
    Kontkanen O V, Niskanen M, Hukka T I, Rantala T T (2016) Electronic structure of p-type perylene monoimide-based donor-acceptor dyes on the nickel oxide (100) surface: a DFT approach. Phys Chem Chem Phys 18:14382–14389CrossRefGoogle Scholar
  35. 35.
    Labat F, Ciofini I, Hratchian H P, Frisch M, Raghavachari K, Adamo C (2009) First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc 131:14290–8CrossRefGoogle Scholar
  36. 36.
    Le Bahers T, Pauporté T, Lainé P P, Labat F, Adamo C, Ciofini I (2013) Modeling dye-sensitized solar cells: from theory to experiment. J Phys Chem Lett 4:1044–1050CrossRefGoogle Scholar
  37. 37.
    Dovesi R, Saunders V R, Roetti C, Orlando R, Zicovich-Wilson C M, Pascale F, Civalleri B, Doll K, Harrison N M, Bush I J, D’Arco P, Llunell M (2009) CRYSTAL09 user’s manual. University of Torino, TorinoGoogle Scholar
  38. 38.
    Dovesi R, Saunders V R, Roetti C, Orlando R, Zicovich-Wilson C M, Pascale F, Civalleri B, Doll K, Harrison N M, Bush I J, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 User’s Manual. University of Torino, TorinoGoogle Scholar
  39. 39.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted ab initio pseudopotentials for the first row transition elements, vol 86, pp 866–872Google Scholar
  40. 40.
    Durand P, Barthelat J C (1975) A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor Chim Acta 38:283CrossRefGoogle Scholar
  41. 41.
    Barthelat J C, Durand P (1978) Gazz Chim Ital 108:225Google Scholar
  42. 42.
    Barthelat J C, Durand P, Serafini A (1977) Non-empirical pseudopotentials for molecular calculations I. The PSIBMOL algorithm and test calculations. Molec Phys 33:159CrossRefGoogle Scholar
  43. 43.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158CrossRefGoogle Scholar
  44. 44.
    Perdew J P, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  45. 45.
    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106CrossRefGoogle Scholar
  46. 46.
    Broyden C (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593CrossRefGoogle Scholar
  47. 47.
    Lide D (1990) CRC Handbook of Chemistry and Physics, 71st edn. CRC Press, Boston, pp 1990–1991Google Scholar
  48. 48.
    Cox P (1992) Transition Metal Oxides. Oxford Science Publications. Clarendon Press, OxfordGoogle Scholar
  49. 49.
    Sawatzky G A, Allen J W (1984) Magnitude and origin of the band gap in NiO. Phys Rev Lett 53:2339–2342CrossRefGoogle Scholar
  50. 50.
    Cheetham A K, Hope D A O (1983) Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1−xO. Phys Rev B 27:6964–6967CrossRefGoogle Scholar
  51. 51.
    Fender B E F, Jacobson A J, Wedgwood F A (1968) Covalency parameters in MnO, α-MnS, and NiO. J Chem Phys 48:990– 994CrossRefGoogle Scholar
  52. 52.
    Hutchings M T, Samuelsen E J (1972) Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys Rev B 6:3447–3461CrossRefGoogle Scholar
  53. 53.
    Shanker R, Singh R A (1973) Analysis of the exchange parameters and magnetic properties of NiO. Phys Rev B 7:5000–5005CrossRefGoogle Scholar
  54. 54.
    Archer T, Pemmaraju C D, Sanvito S, Franchini C, He J, Filippetti A, Delugas P, Puggioni D, Fiorentini V, Tiwari R, Majumdar P (2011) Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods. Phys Rev B 84:115114CrossRefGoogle Scholar
  55. 55.
    De P R Moreira I, Illas F, Martin RL (2002) Effect of Fock exchange on the electronic structure and magnetic coupling in NiO. Phys Rev B 65:155102CrossRefGoogle Scholar
  56. 56.
    Bredow T, Gerson A R (2000) Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys Rev B 61:5194–5201CrossRefGoogle Scholar
  57. 57.
    Rohrbach A, Hafner J, Kresse G (2004) Molecular adsorption on the surface of strongly correlated transition-metal oxides: a case study for CO/NiO(100). Phys Rev B 69:075413CrossRefGoogle Scholar
  58. 58.
    Netzer F P, Prutton M (1975) Leed and electron spectroscopic observations on NiO (100). J Phys C: Solid State Phys 8:2401CrossRefGoogle Scholar
  59. 59.
    Welton-Cook M R, Prutton M (1980) Leed calculations for the NiO (100) surface: extension to lower energies. J Phys C: Solid State Phys 13:3993CrossRefGoogle Scholar
  60. 60.
    Kinniburgh C, Walker J (1977) Leed calculations for the NiO(100) surface. Surface Science 63:274–282CrossRefGoogle Scholar
  61. 61.
    Castell M R, Dudarev S L, Briggs G A D, Sutton A P (1999) Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory. Phys Rev B 59:7342–7345CrossRefGoogle Scholar
  62. 62.
    Labat F, Ciofini I, Hratchian H P, Frisch M J, avachari K R, Adamo C (2011) Insights into working principles of ruthenium polypyridyl dye-sensitized solar cells from first principles modeling. J Phys Chem C 115:4297–4306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael Wykes
    • 1
  • Fabrice Odobel
    • 2
  • Carlo Adamo
    • 1
    • 3
  • Ilaria Ciofini
    • 1
  • Frédéric Labat
    • 1
    Email author
  1. 1.Chimie Paristech-CNRS, Institut de Recherche de Chimie de ParisPSL Research UniversityParisFrance
  2. 2.CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)Université LUNAM, Université de NantesNantes cedex 3France
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations