Journal of Molecular Modeling

, 22:284 | Cite as

Is photoisomerization required for NO photorelease in ruthenium nitrosyl complexes?

  • Juan Sanz García
  • Fabienne Alary
  • Martial Boggio-Pasqua
  • Isabelle M. Dixon
  • Jean-Louis Heully
Original Paper
Part of the following topical collections:
  1. Festschrift in Honor of Henry Chermette


The factors that explain the competition between intramolecular NO linkage photoisomerization and NO photorelease in five ruthenium nitrosyl complexes were investigated. By applying DFT-based methods, it was possible to characterize the ground states and lowest triplet potential energy surfaces of these species, and to establish that both photoisomerization and photorelease processes can occur in the lowest triplet state of each species. This work highlights the crucial role of the sideways-bonded isomer, a metastable state also known as the MS2 isomer, in the photochemical loss of NO, while the results obtained also indicate that the population of the triplet state of this isomer is compulsory for both processes and show how photoisomerization and photorelease interfere.

Graphical Abstract

Illustration of the crucial role of the 3MS2 state in the photoreactivities of ruthenium nitrosyl complexes


Computational study DFT Ruthenium complexes Photorelease Nitrosyl Photoisomerization pathway Chain-of-states method Bond dissociation energy 



This paper is dedicated to Prof. H. Chermette, whose pioneering work (2001) on the photoisomerization of metal nitrosyl complexes was greatly inspiring to us.

Fruitful discussions with Isabelle Malfant’s team (LCC-CNRS Toulouse) and Marylise Buron-Lecointe (ESIR Rennes) were highly appreciated.

This work was performed using HPC resources from CALMIP (grant no. 2015-P1133).

Supplementary material

894_2016_3138_MOESM1_ESM.docx (19.7 mb)
ESM 1 (DOCX 20204 kb)


  1. 1.
    Gütlich P, Garcia Y, Woike T (2001) Coord Chem Rev 250:839–879CrossRefGoogle Scholar
  2. 2.
    Coppens P, Novozhilova I, Kovalevsky A (2002) Chem Rev 102:861–884CrossRefGoogle Scholar
  3. 3.
    Ford PC, Wecksler S (2005) Coord Chem Rev 249:1382–1395CrossRefGoogle Scholar
  4. 4.
    Bitterwolf TE (2006) Coord Chem Rev 250:1196–1207CrossRefGoogle Scholar
  5. 5.
    Tfouni E, Truzzi DR, Tavares A, Gomes AJ, Figueiredo LE, Franco DW (2012) Nitric Oxide 26:38–53CrossRefGoogle Scholar
  6. 6.
    Fomitchev DV, Coppens P, Li T, Bagley KA, Chen L, Richter-Addo GB (1999) Chem Commun 19:2013–2014CrossRefGoogle Scholar
  7. 7.
    Da Silva SC, Franco DW (1999) Spectrochim Acta A 55:1515–1525Google Scholar
  8. 8.
    Gorelsky SI, Lever ABP (2000) Int J Quantum Chem 80:636–645CrossRefGoogle Scholar
  9. 9.
    Schaniel D, Cormary B, Malfant I, Valade L, Woike T, Delley B, Krämer KW, Güdel H-U (2007) Phys Chem Chem Phys 9:3717–3724CrossRefGoogle Scholar
  10. 10.
    Schaniel D, Woike T, Boskovic C, Güdel H-U (2004) Chem Phys Lett 390:347–351CrossRefGoogle Scholar
  11. 11.
    Bitterwolf TE (2008) Inorg Chem Commun 11:772–773CrossRefGoogle Scholar
  12. 12.
    Cormary B, Malfant I, Buron-Le Cointe M, Toupet L, Delley B, Schaniel D, Mockus N, Woike T, Fejfarová K, Petříček V, Dušek M (2009) Acta Crystallogr B 65:612–623CrossRefGoogle Scholar
  13. 13.
    Giglmeier H, Kerscher T, Klüfers P, Schaniel D, Woike T (2009) Dalton Trans 42:9113–9116CrossRefGoogle Scholar
  14. 14.
    Zangl A, Klüfers P, Schaniel D, Woike T (2009) Dalton Trans 6:1034–1045CrossRefGoogle Scholar
  15. 15.
    Cormary B, Ladeira S, Jacob K, Lacroix PG, Woike T, Schaniel D, Malfant I (2012) Inorg Chem 51:7492–7501CrossRefGoogle Scholar
  16. 16.
    Khadeeva L, Kaszub W, Lorenc M, Malfant I, Buron-Le Cointe M (2016) Inorg Chem 55:4117–4123CrossRefGoogle Scholar
  17. 17.
    Sanz GJ, Alary F, Boggio-Pasqua M, Dixon IM, Malfant I, Heully J-L (2015) Inorg Chem 54:8310–8318CrossRefGoogle Scholar
  18. 18.
    Freitag L, González L (2014) Inorg Chem 53:6415–6426CrossRefGoogle Scholar
  19. 19.
    Karidi K, Garoufis A, Tsipis A, Hadjiliadis N, den Dulk H, Reedijk J (2005) Dalton Trans 7:1176–1187CrossRefGoogle Scholar
  20. 20.
    Akl J, Sasaki I, Lacroix PG, Malfant I, Mallet-Ladeira S, Vicendo P, Farfán N, Santillan R (2014) Dalton Trans 43:12721–12733CrossRefGoogle Scholar
  21. 21.
    De Candia AG, Marcolongo JP, Etchenique R, Slep LD (2010) Inorg Chem 49:6925–6930CrossRefGoogle Scholar
  22. 22.
    Hirano T, Ueda K, Mukaida M, Nagao H, Oi T (2001) J Chem Soc Dalton Trans 2341–2345Google Scholar
  23. 23.
    Göttle AJ, Dixon IM, Alary F, Heully J-L, Boggio-Pasqua MJ (2011) Am Chem Soc 133:9172–9174CrossRefGoogle Scholar
  24. 24.
    Göttle AJ, Alary F, Dixon IM, Heully J-L, Boggio-Pasqua M (2014) Inorg Chem 53:6752–6760CrossRefGoogle Scholar
  25. 25.
    Ding L, Chung LW, Morokuma KJ (2014) Chem Theory Comput 10:668–675CrossRefGoogle Scholar
  26. 26.
    Greenough SE, Roberts GM, Smith NA, Horbury MD, McKinlay RG, Zurek JM, Paterson MJ, Sadler PJ, Stavros VG (2014) Phys Chem Chem Phys 16:19141–19155CrossRefGoogle Scholar
  27. 27.
    Freitag L, Knecht S, Keller SF, Delcey MG, Aquilante F, Pedersen TB, Lindh R, Reiher M, González L (2015) Phys Chem Chem Phys 17:14383–14392CrossRefGoogle Scholar
  28. 28.
    Göttle AJ, Alary F, Boggio-Pasqua M, Dixon IM, Heully J-L, Bahreman A, Askes SHC, Bonnet S (2016) Inorg Chem 55:4448–4456CrossRefGoogle Scholar
  29. 29.
    Scattergood PA, Khushnood U, Tariq A, Cooke DJ, Rice GR, Elliott PIP (2016) Inorg Chem 55:7787–7796CrossRefGoogle Scholar
  30. 30.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  31. 31.
    Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110CrossRefGoogle Scholar
  32. 32.
    Frisch MJ et al (2010) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  33. 33.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  34. 34.
    Becke ADJ (1993) Chem Phys 98:5648–5652Google Scholar
  35. 35.
    Grimme S, Ehrlich S, Goerick LJ (2011) Comput Chem 32:1456–1465CrossRefGoogle Scholar
  36. 36.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  37. 37.
    Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  38. 38.
    E W, Ren W, Vanden-Eijnden E (2007) J Chem Phys 126:164103Google Scholar
  39. 39.
    Schäfer A, Horn H, Ahlrichs RJ (1992) Chem Phys 97:2571–2577Google Scholar
  40. 40.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489CrossRefGoogle Scholar
  41. 41.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  42. 42.
    Neese F (2012) WIREs Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  43. 43.
    Sinnecker S, Rajendran A, Klamt A, Diedenhofen M, Neese FJ (2006) Phys Chem A 110:2235–2245CrossRefGoogle Scholar
  44. 44.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  45. 45.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  46. 46.
    Hirata S, Head-Gordon M (1999) Chem Phys Lett 314:291–299CrossRefGoogle Scholar
  47. 47.
    Hirata S, Head-Gordon M (1999) Chem Phys Lett 302:375–382CrossRefGoogle Scholar
  48. 48.
    Neese F (2003) J Comput Chem 24:1740–1747CrossRefGoogle Scholar
  49. 49.
    Neese F, Wennmohs F, Hansen A, Becker U (2009) Chem Phys 356:98–109CrossRefGoogle Scholar
  50. 50.
    Martin RLJ (2003) Chem Phys 118:4775–4777Google Scholar
  51. 51.
    Tfouni E, Krieger M, McGarvey BR, Franco DW (2003) Coord Chem Rev 236:57–69CrossRefGoogle Scholar
  52. 52.
    Caramori GF, Frenking G (2007) Organometallics 26:5815–5825CrossRefGoogle Scholar
  53. 53.
    Caramori GF, Kunitz AG, Andriani KF, Doro FG, Frenking G, Tfouni E (2012) Dalton Trans 41:7327–7339CrossRefGoogle Scholar
  54. 54.
    Andriani KF, Caramori GF, Doro FG, Parreira RLT (2014) Dalton Trans 43:8792–8804CrossRefGoogle Scholar
  55. 55.
    Delcey MG, Freitag L, Pedersen TB, Aquilante F, Lindh R, González L (2014) J Chem Phys 140:174103CrossRefGoogle Scholar
  56. 56.
    Coe BJ, Meyer TJ, White PS (1995) Inorg Chem 34:593–602CrossRefGoogle Scholar
  57. 57.
    Hoyer CE, Ghosh S, Truhlar DG, Gagliardi LJ (2016) Phys Chem Lett 7:586–591CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMCCNRS et Université de ToulouseToulouseFrance

Personalised recommendations