Advertisement

Ligand binding to anti-cancer target CD44 investigated by molecular simulations

  • Tin Trung Nguyen
  • Duy Phuoc Tran
  • Pham Dinh Quoc Huy
  • Zung Hoang
  • Paolo Carloni
  • Phuc Van Pham
  • Chuong Nguyen
  • Mai Suan Li
Original Paper

Abstract

CD44 is a cell-surface glycoprotein and receptor for hyaluronan, one of the major components of the tumor extracellular matrix. There is evidence that the interaction between CD44 and hyaluronan promotes breast cancer metastasis. Recently, the molecule F-19848A was shown to inhibit hyaluronan binding to receptor CD44 in a cell-based assay. In this study, we investigated the mechanism and energetics of F-19848A binding to CD44 using molecular simulation. Using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method, we obtained the binding free energy and inhibition constant of the complex. The van der Waals (vdW) interaction and the extended portion of F-19848A play key roles in the binding affinity. We screened natural products from a traditional Chinese medicine database to search for CD44 inhibitors. From combining pharmaceutical requirements with docking and molecular dynamics simulations, we found ten compounds that are potentially better or equal to the F-19848A ligand at binding to CD44 receptor. Therefore, we have identified new candidates of CD44 inhibitors, based on molecular simulation, which may be effective small molecules for the therapy of breast cancer.

Keywords

Breast cancer CD44 F-19848A Hyaluronan Steered molecular dynamics Traditional Chinese medicine 

Abbreviations

BCSCs

Breast cancer stem cells

HA

Hyaluronan

MM-PBSA

Molecular mechanics Poisson Boltzmann surface area

vdW

Van der Waals

TCM

Traditional Chinese medicine

MD

Molecular dynamics

SMD

Steered molecular dynamics

SC

Side chain

HB

Hydrogen bond

Notes

Acknowledgments

This work was supported by Department of Science and Technology at Ho Chi Minh city, Vietnam. We are grateful to Quan Van Vuong for useful discussions and technical assistance. Allocation of CPU time at the supercomputer center TASK in Gdansk (Poland) is highly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

894_2016_3029_MOESM1_ESM.doc (950 kb)
Supplementary information 1 File CD44pp_JMM_SI.pdf contains information about the binding free energy of F-19848A obtained by MM-PBSA method, and related data about the binding properties of CD44 and F-19848A. Comparison of the top ten candidate molecules with potential binding to CD44 (in the PDF) (DOC 950 kb)

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefGoogle Scholar
  2. 2.
    Parkin DM, Fernández LMG (2006) Use of statistics to assess the global burden of breast cancer. Breast J 12(Suppl 1):S70–S80CrossRefGoogle Scholar
  3. 3.
    Guarneri V, Conte PF (2004) The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging 31(Suppl 1):S149–S161CrossRefGoogle Scholar
  4. 4.
    Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Springer New York, pp 1–22Google Scholar
  5. 5.
    Gokmen-Polar Y, Nakshatri H, Badve S (2011) Biomarkers for breast cancer stem cells: the challenges ahead. Biomark Med 5:661–671CrossRefGoogle Scholar
  6. 6.
    Iqbal J, Chong PY, Tan PH (2013) Breast cancer stem cells: an update. J Clin Pathol 66:485–490CrossRefGoogle Scholar
  7. 7.
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988CrossRefGoogle Scholar
  8. 8.
    Van Phuc P, Nhan PLC, Nhung TH et al (2011) Downregulation of CD44 reduces doxorubicin resistance of CD44CD24 breast cancer cells. Onco Targets Ther 4:71–78CrossRefGoogle Scholar
  9. 9.
    Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45CrossRefGoogle Scholar
  10. 10.
    Naor D, Nedvetzki S, Golan I et al (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579CrossRefGoogle Scholar
  11. 11.
    Guvench O (2015) Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation. Inflammation 6:305. doi: 10.3389/fimmu.2015.00305 Google Scholar
  12. 12.
    Plazinski W, Knys-Dzieciuch A (2012) Interactions between CD44 protein and hyaluronan: insights from the computational study. Mol Biosyst 8:543–547CrossRefGoogle Scholar
  13. 13.
    Jamison FW, Foster TJ, Barker JA et al (2011) Mechanism of binding site conformational switching in the CD44-hyaluronan protein-carbohydrate binding interaction. J Mol Biol 406:631–647CrossRefGoogle Scholar
  14. 14.
    Favreau AJ, Faller CE, Guvench O (2013) CD44 receptor unfolding enhances binding by freeing basic amino acids to contact carbohydrate ligand. Biophys J 105:1217–1226. doi: 10.1016/j.bpj.2013.07.041 CrossRefGoogle Scholar
  15. 15.
    Jana M, Bandyopadhyay S (2012) Conformational flexibility of a protein-carbohydrate complex and the structure and ordering of surrounding water. Phys Chem Chem Phys 14:6628–6638. doi: 10.1039/c2cp24104h CrossRefGoogle Scholar
  16. 16.
    Jana M, Bandyopadhyay S (2012) Restricted dynamics of water around a protein-carbohydrate complex: computer simulation studies. J Chem Phys 137:055102. doi: 10.1063/1.4739421 CrossRefGoogle Scholar
  17. 17.
    Hirota-Takahata Y, Harada H, Tanaka I et al (2007) F-19848 A, a novel inhibitor of hyaluronic acid binding to cellular receptor CD44. J Antibiot 60:633–639CrossRefGoogle Scholar
  18. 18.
    Mondal S, Bandyopadhyay S, Ghosh MK et al (2012) Natural products: promising resources for cancer drug discovery. Anticancer Agents Med Chem 12:49–75CrossRefGoogle Scholar
  19. 19.
    Chen CY-C (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 6:e15939–e15939CrossRefGoogle Scholar
  20. 20.
    Teriete P, Banerji S, Noble M et al (2004) Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell 13:483–496CrossRefGoogle Scholar
  21. 21.
    Frisch M, Trucks G, Schlegel H et al. (2004) Gaussian 03, revision C.02. Gaussian Inc, WallingfordGoogle Scholar
  22. 22.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461Google Scholar
  23. 23.
    Banerji S, Wright AJ, Noble M et al (2007) Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 14:234–239CrossRefGoogle Scholar
  24. 24.
    van der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  25. 25.
    Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363CrossRefGoogle Scholar
  26. 26.
    Van Gunsteren W, Billeter SR, Eising AA, et al. (1996) Biomolecular simulation: the GROMOS96 manual and user guide.Google Scholar
  27. 27.
    Berendsen HJC, Postma JPM, Van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. Springer, Dordrecht, pp 331–342Google Scholar
  28. 28.
    Van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185CrossRefGoogle Scholar
  29. 29.
    Hess B, Bekker H, Berendsen H, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  30. 30.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  31. 31.
    Bussi G, Zykova-Timan T, Parrinello M (2009) Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J Chem Phys 130:074101CrossRefGoogle Scholar
  32. 32.
    Berendsen HJC, Postma JPM, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684CrossRefGoogle Scholar
  33. 33.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  34. 34.
    Grubmüller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science (New York NY) 271:997–999CrossRefGoogle Scholar
  35. 35.
    Suan Li M, Khanh Mai B (2012) Steered molecular dynamics-a promising tool for drug design. Curr Bioinforma 7:342–351CrossRefGoogle Scholar
  36. 36.
    Chovancova E, Pavelka A, Benes P et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8:e1002708–e1002708CrossRefGoogle Scholar
  37. 37.
    Gibson CT, Weeks BL, Abell C et al (2003) Calibration of AFM cantilever spring constants. Ultramicroscopy 97:113–118CrossRefGoogle Scholar
  38. 38.
    Mai BK, Viet MH, Li MS (2010) Top leads for swine influenza A/H1N1 virus revealed by steered molecular dynamics approach. J Chem Inf Model 50:2236–2247CrossRefGoogle Scholar
  39. 39.
    Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897CrossRefGoogle Scholar
  40. 40.
    McQuarrie DA (1973) Statistical thermodynamics, 2nd edn. Harper and Row, New YorkGoogle Scholar
  41. 41.
    Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041CrossRefGoogle Scholar
  42. 42.
    Duan Y, Wu C, Chowdhury S et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  43. 43.
    Samsonov SA, Teyra J, Pisabarro MT (2011) Docking glycosaminoglycans to proteins: analysis of solvent inclusion. J Comput Aided Mol Des 25:477–489CrossRefGoogle Scholar
  44. 44.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341CrossRefGoogle Scholar
  45. 45.
    Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12:306–317CrossRefGoogle Scholar
  46. 46.
    Vuong QV, Nguyen TT, Li MS (2015) A new method for navigating optimal direction for pulling ligand from binding pocket: application to ranking binding affinity by steered molecular dynamics. J Chem Inf Model 55:2731–2738CrossRefGoogle Scholar
  47. 47.
    Nguyen TT, Mai BK, Li MS (2011) Study of Tamiflu sensitivity to variants of A/H5N1 virus using different force fields. J Chem Inf Model 51:2266–2276CrossRefGoogle Scholar
  48. 48.
    Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82CrossRefGoogle Scholar
  49. 49.
    Mai BK, Li MS (2011) Neuraminidase inhibitor R-125489–a promising drug for treating influenza virus: steered molecular dynamics approach. Biochem Biophys Res Commun 410:688–691CrossRefGoogle Scholar
  50. 50.
    Meeprasert A, Rungrotmongkol T, Li MS, Hannongbua S (2014) In silico screening for potent inhibitors against the NS3/4A protease of hepatitis C virus. Curr Pharm Des 20:3465–3477CrossRefGoogle Scholar
  51. 51.
    Colizzi F, Perozzo R, Scapozza L et al (2010) Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc 132:7361–7371CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Computational Sciences and TechnologyHo Chi Minh CityVietnam
  2. 2.University of TechnologyVietnam National University–Ho Chi Minh CityHo Chi Minh CityVietnam
  3. 3.Institute of PhysicsPolish Academy of SciencesWarsawPoland
  4. 4.Center for Molecular and NanoArchitecture (MANAR)Vietnam National University–Ho Chi Minh CityHo Chi Minh CityVietnam
  5. 5.Computational BiomedicineInstitute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JuelichJuelichGermany
  6. 6.Stem Cell Research and Application LaboratoryUniversity of Science, Vietnam National UniversityHo Chi Minh CityVietnam
  7. 7.Theoretical Physics Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  8. 8.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations