Advertisement

A theoretical study on the hydrogen-bonding interactions between flavonoids and ethanol/water

  • Yan-Zhen ZhengEmail author
  • Yu Zhou
  • Qin Liang
  • Da-Fu ChenEmail author
  • Rui Guo
Original Paper

Abstract

Ethanol and water are the solvents most commonly used to extract flavonoids from propolis. Do hydrogen-bonding interactions exist between flavonoids and ethanol/water? In this work, this question was addressed by using density functional theory (DFT) to provide information on the hydrogen-bonding interactions between flavonoids and ethanol/water. Chrysin and Galangin were chosen as the representative flavonoids. The investigated complexes included chrysin–H2O, chrysin–CH3CH2OH, galangin–H2O and galangin–CH3CH2OH dyads. Molecular geometries, hydrogen-bond binding energies, charges of monomers and dyads, and topological analysis were studied at the B3LYP/M062X level of theory with the 6−31++G(d,p) basis set. The main conclusions were: (1) nine and ten optimized hydrogen-bond geometries were obtained for chrysin–H2O/CH3CH2OH and galangin–H2O/CH3CH2OH complexes, respectively. (2) The hydrogen atoms except aromatic H1 and H5 and all of the oxygen atoms can form hydrogen-bonds with H2O and CH3CH2OH. Ethanol and water form strong hydrogen-bonds with the hydroxyl, carbonyl and ether groups in chrysin/galangin and form weak hydrogen-bonds with aromatic hydrogen atoms. Except in structures labeled A and B, chrysin and galangin interact more strongly with H2O than CH3CH2OH. (3) When chrysin and galangin form hydrogen-bonds with H2O and CH3CH2OH, charge transfers from the hydrogen-bond acceptor (H2O and CH3CH2OH in structures A, B, G, H, I, J) to the hydrogen-bond donor (chrysin and galangin in structure A, B, G, H, I, J). The stronger hydrogen-bond makes the hydrogen-bond donor lose more charge (A> B> G> H> I> J). (4) Most of the hydrogen-bonds in chrysin/galangin−H2O/CH3CH2OH complexes may be considered as electrostatic dominant, while C−O2···H in structures labeled E and C−O5···H in structures labeled J are hydrogen-bonds combined of electrostatic and covalent characters. H9, H7, and O4 are the preferred hydrogen-bonding sites.

Keywords

Propolis Flavonoids Hydrogen-bond Extraction Density functional theory 

Notes

Acknowledgment

This work was supported by the earmarked fund for China Agriculture Research System (CARS-45-KXJ7).

Supplementary material

894_2016_2968_MOESM1_ESM.docx (25 kb)
Table S1 (DOCX 25 kb)

References

  1. 1.
    Ghisalberti EL (1979) Bee world 60:59Google Scholar
  2. 2.
    Daugsch A, Moraes CS, Fort P et al (2008) Evid Based Complement Alternat Med 5:435CrossRefGoogle Scholar
  3. 3.
    Bonvehí JS, Coll FV (1994) J Am Oil Chem Soc 71:529CrossRefGoogle Scholar
  4. 4.
    Merino N, González R, González A et al (1996) Arch Med Res 27:285Google Scholar
  5. 5.
    Sroka Z, Żbikowska B, Hładyszowski J (2015) J Mol Model 21:1CrossRefGoogle Scholar
  6. 6.
    Scheller S, Gazda G, Pietsz G et al (1998) Pharmacol Res Commun 20:323CrossRefGoogle Scholar
  7. 7.
    Scheller S, Wilczok T, Imielski S et al (1990) Int J Radiat Biol 57:461CrossRefGoogle Scholar
  8. 8.
    Barbarić M, Mišković K, Bojić M et al (2011) J Ethnopharmacol 135:772CrossRefGoogle Scholar
  9. 9.
    Basnet P, Matsushige K, Hase K et al (1996) Biol Pharm Bull 19:1479CrossRefGoogle Scholar
  10. 10.
    Nagai T, Inoue R, Inoue H et al (2003) Food Chem 80:29CrossRefGoogle Scholar
  11. 11.
    Scheiner S (1997) Hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  12. 12.
    Biscaia D, Ferreira SRS (2009) J Supercrit Fluids 51:17CrossRefGoogle Scholar
  13. 13.
    Miguel MG, Nunes S, Dandlen SA et al (2010) Food Chem Toxicol 48:3418CrossRefGoogle Scholar
  14. 14.
    Oliveira BG, Araújo RCMU, Carvalho AB et al (2009) J Mol Model 15:123CrossRefGoogle Scholar
  15. 15.
    Oliveira BG, Lima MCA, Pitta IR et al (2010) J Mol Model 16:119CrossRefGoogle Scholar
  16. 16.
    Clark T, Hennemann M, Murray JS et al (2007) J Mol Model 13:291CrossRefGoogle Scholar
  17. 17.
    Li QZ, An XL, Gong BA et al (2007) J Phys Chem A 111:10166CrossRefGoogle Scholar
  18. 18.
    Li QZ, Liu ZB, Cheng JB et al (2009) J Mol Struct (Theochem) 896:112CrossRefGoogle Scholar
  19. 19.
    Li QZ, Wu GS, Yu ZW (2006) J Am Chem Soc 128:1438CrossRefGoogle Scholar
  20. 20.
    Esrafili MD (2012) J Mol Model 18:5005CrossRefGoogle Scholar
  21. 21.
    Dega-Szafran Z, Katrusiak A, Szafran M (2006) J Mol Struct 785:160CrossRefGoogle Scholar
  22. 22.
    Szafran M, Katrusiak A, Dega-Szafran Z (2007) J Mol Struct 839:99CrossRefGoogle Scholar
  23. 23.
    Ireta J, Neugebauer J, Scheffler M (2004) J Phys Chem A 108:5692CrossRefGoogle Scholar
  24. 24.
    Köddermann T, Wertz C, Heintz A et al (2006) ChemPhysChem 7:1944CrossRefGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09. Revision B.01. Gaussian Inc, WallingfordGoogle Scholar
  26. 26.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  27. 27.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  28. 28.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  29. 29.
    Lu T, Chen F (2012) J Comput Chem 33:580CrossRefGoogle Scholar
  30. 30.
    Arunan E, Desiraju GR, Klein RA et al (2011) Pure Appl Chem 83:1637Google Scholar
  31. 31.
    Pauling L (1960) The nature of the chemical bond. Cornell University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations