Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets

Original Paper

Abstract

Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost.

Graphical Abstract

A snapshot of the simulation system. The BNNS membrane with the large functionalized pore is located in the middle of the box. The size of the box is 3 × 3 × 5 nm3. Green chlorine, cyan carbon, red oxygen, white hydrogen

Keywords

Boron nitride nanosheet Trihalomethanes Density profile Radial distribution function 

Notes

Acknowledgments

The authors thank the University of Tabriz and the Iranian Nanotechnology Initiative Council for support. This work is funded by the research grant NRF-2015-002423 of the National Research Foundation of Korea.

Supplementary material

894_2016_2939_MOESM1_ESM.docx (4.1 mb)
ESM 1 (DOCX 4240 kb)

References

  1. 1.
    Gad SC (2005) Trihalomethanes. In: Wexler P (ed) Encyclopedia of toxicology, 2nd edn. Elsevier, New York, pp 389–391. doi: 10.1016/B0-12-369400-0/00988-1 CrossRefGoogle Scholar
  2. 2.
    Cech I, Smith V, Henry J et al (1982) Spatial and seasonal variations in concentration of trihalomethanes in drinking water. In: Albaiges J (ed) Analytical techniques in environmental chemistry. Pergamon, Oxford, pp 19–38. doi:  10.1016/B978-0-08-028740-9.50006-9
  3. 3.
    Nikolaou AD, Golfinopoulos SK, Arhonditsis GB, Kolovoyiannis V, Lekkas TD (2004) Modeling the formation of chlorination by-products in river waters with different quality. Chemosphere 55(3):409–420. doi: 10.1016/j.chemosphere.2003.11.008 CrossRefGoogle Scholar
  4. 4.
    Wang G-S, Deng Y-C, Lin T-F (2007) Cancer risk assessment from trihalomethanes in drinking water. Sci Total Environ 387(1–3):86–95. doi: 10.1016/j.scitotenv.2007.07.029 CrossRefGoogle Scholar
  5. 5.
    Chaidou CI, Georgakilas VI, Stalikas C, Saraçi M, Lahaniatis ES (1999) Formation of chloroform by aqueous chlorination of organic compounds. Chemosphere 39(4):587–594. doi: 10.1016/S0045-6535(99)00124-1 CrossRefGoogle Scholar
  6. 6.
    Sajjad M, Morell G, Feng P (2013) Advance in novel boron nitride nanosheets to nanoelectronic device applications. ACS Appl Mater Interfaces 5(11):5051–5056. doi: 10.1021/am400871s CrossRefGoogle Scholar
  7. 7.
    Zhou S-J, Ma C-Y, Meng Y-Y, Su H-F, Zhu Z, Deng S-L, Xie S-Y (2012) Activation of boron nitride nanotubes and their polymer composites for improving mechanical performance. Nanotechnology 23(5):055708. doi: 10.1088/0957-4484/23/5/055708 CrossRefGoogle Scholar
  8. 8.
    Yu J, Qin L, Hao Y, Kuang S, Bai X, Chong Y-M, Zhang W, Wang E (2010) Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 4(1):414–422. doi: 10.1021/nn901204c CrossRefGoogle Scholar
  9. 9.
    Postole G, Gervasini A, Guimon C, Auroux A, Bonnetot B (2006) Influence of the preparation method on the surface characteristics and activity of boron-nitride-supported noble metal catalysts. J Phys Chem B 110(25):12572–12580. doi: 10.1021/jp060183x CrossRefGoogle Scholar
  10. 10.
    Weng Q, Wang X, Zhi C, Bando Y, Golberg D (2013) Boron nitride porous microbelts for hydrogen storage. ACS Nano 7(2):1558–1565. doi: 10.1021/nn305320v CrossRefGoogle Scholar
  11. 11.
    Lee CH, Wang J, Kayatsha VK, Huang JY, Yap YK (2008) Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19(45):455605. doi: 10.1088/0957-4484/19/45/455605 CrossRefGoogle Scholar
  12. 12.
    Qiu Y, Yu J, Rafique J, Yin J, Bai X, Wang E (2009) Large-scale production of aligned long boron nitride nanofibers by multijet/multicollector electrospinning. J Phys Chem C 113(26):11228–11234. doi: 10.1021/jp901267k CrossRefGoogle Scholar
  13. 13.
    Chen Z-G, Zou J, Liu G, Li F, Wang Y, Wang L, Yuan X-L, Sekiguchi T, Cheng H-M, Lu GQ (2008) Novel boron nitride hollow nanoribbons. ACS Nano 2(10):2183–2191. doi: 10.1021/nn8004922 CrossRefGoogle Scholar
  14. 14.
    Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798. doi: 10.1021/cr300263a CrossRefGoogle Scholar
  15. 15.
    Jain N, Bansal T, Durcan CA, Xu Y, Yu B (2013) Monolayer graphene/hexagonal boron nitride heterostructure. Carbon 54:396–402. doi: 10.1016/j.carbon.2012.11.054 CrossRefGoogle Scholar
  16. 16.
    Sajjad M, Feng P (2014) Study the gas sensing properties of boron nitride nanosheets. Mater Res Bull 49:35–38. doi: 10.1016/j.materresbull.2013.08.019 CrossRefGoogle Scholar
  17. 17.
    Yurdakul H, Göncü Y, Durukan O, Akay A, Seyhan AT, Ay N, Turan S (2012) Nanoscopic characterization of two-dimensional (2D) boron nitride nanosheets (BNNSs) produced by microfluidization. Ceram Int 38(3):2187–2193. doi: 10.1016/j.ceramint.2011.10.064 CrossRefGoogle Scholar
  18. 18.
    Xuebin W, Chunyi Z, Qunhong W, Yoshio B, Dmitri G (2013) Boron nitride nanosheets: novel syntheses and applications in polymeric composites. J Phys Conf Ser 471(1):012003. doi: 10.1088/1742-6596/471/1/012003 Google Scholar
  19. 19.
    Lee KH, Shin H-J, Lee J, Lee I-y, Kim G-H, Choi J-Y, Kim S-W (2012) Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett 12(2):714–718. doi: 10.1021/nl203635v CrossRefGoogle Scholar
  20. 20.
    Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4(6):2979–2993. doi: 10.1021/nn1006495 CrossRefGoogle Scholar
  21. 21.
    Mortazavi B, Rémond Y (2012) Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys E 44(9):1846–1852. doi: 10.1016/j.physe.2012.05.007 CrossRefGoogle Scholar
  22. 22.
    Lei W, Zhang H, Wu Y, Zhang B, Liu D, Qin S, Liu Z, Liu L, Ma Y, Chen Y (2014) Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energ 6:219–224. doi: 10.1016/j.nanoen.2014.04.004 CrossRefGoogle Scholar
  23. 23.
    Sun Q, Li Z, Searles DJ, Chen Y, Lu G, Du A (2013) Charge-controlled switchable CO2 capture on boron nitride nanomaterials. J Am Chem Soc 135(22):8246–8253. doi: 10.1021/ja400243r CrossRefGoogle Scholar
  24. 24.
    Pakdel A, Zhi C, Bando Y, Golberg D (2012) Low-dimensional boron nitride nanomaterials. Mater Today 15(6):256–265. doi: 10.1016/S1369-7021(12)70116-5 CrossRefGoogle Scholar
  25. 25.
    Wang Y, Shi Z, Yin J (2011) Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem 21(30):11371–11377. doi: 10.1039/C1JM10342C CrossRefGoogle Scholar
  26. 26.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. doi: 10.1002/jcc.540141112 CrossRefGoogle Scholar
  27. 27.
    Suk ME, Aluru NR (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1(10):1590–1594. doi: 10.1021/jz100240r CrossRefGoogle Scholar
  28. 28.
    Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford Engineering Science Series, New YorkGoogle Scholar
  29. 29.
    Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: Greater scalability for parallel molecular dynamics. J Comput Phys 151(1):283–312. doi: 10.1006/jcph.1999.6201 CrossRefGoogle Scholar
  30. 30.
    Azamat J, Khataee A, Joo SW (2014) Separation of a heavy metal from water through a membrane containing boron nitride nanotubes: molecular dynamics simulations. J Mol Model 20(10):1–9. doi: 10.1007/s00894-014-2468-1 CrossRefGoogle Scholar
  31. 31.
    Azamat J, Khataee A, Joo SW (2014) Functionalized graphene as a nanostructured membrane for removal of copper and mercury from aqueous solution: a molecular dynamics simulation study. J Mol Graphics Modell 53:112–117. doi: 10.1016/j.jmgm.2014.07.013 CrossRefGoogle Scholar
  32. 32.
    Azamat J, Khataee A, Joo SW (2015) Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure. Chem Eng Sci 127:285–292. doi: 10.1016/j.ces.2015.01.048 CrossRefGoogle Scholar
  33. 33.
    Azamat J, Sardroodi JJ, Rastkar A (2014) Water desalination through armchair carbon nanotubes: a molecular dynamics study. RSC Adv 4(109):63712–63718. doi: 10.1039/C4RA08249D CrossRefGoogle Scholar
  34. 34.
    Azamat J, Khataee A, Joo SW (2015) Removal of heavy metals from water through armchair carbon and boron nitride nanotubes: a computer simulation study. RSC Adv 5(32):25097–25104. doi: 10.1039/C4RA17048B CrossRefGoogle Scholar
  35. 35.
    Azamat J, Sardroodi J (2014) The permeation of potassium and chloride ions through nanotubes: a molecular simulation study. Monatsh Chem 145(6):881–890. doi: 10.1007/s00706-013-1136-y CrossRefGoogle Scholar
  36. 36.
    Ciccotti G, Frenkel D, McDonald IR (1987) Simulation of liquids and solids: molecular dynamics and monte carlo methods in statistical mechanics. North Holland, New YorkGoogle Scholar
  37. 37.
    Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graphics 14(1):33–38. doi: 10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  38. 38.
    Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol. 1. Academic, New YorkGoogle Scholar
  39. 39.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi: 10.1063/1.445869 CrossRefGoogle Scholar
  40. 40.
    MacKerell AD, Bashford D, Bellott DRL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. doi: 10.1021/jp973084f CrossRefGoogle Scholar
  41. 41.
    Mayne CG, Saam J, Schulten K, Tajkhorshid E, Gumbart JC (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34(32):2757–2770. doi: 10.1002/jcc.23422 CrossRefGoogle Scholar
  42. 42.
    Boldrin L, Scarpa F, Chowdhury R, Adhikari S (2011) Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50):505702. doi: 10.1088/0957-4484/22/50/505702 CrossRefGoogle Scholar
  43. 43.
    Zhu F, Tajkhorshid E, Schulten K (2002) Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys J 83(1):154–160. doi: 10.1016/S0006-3495(02)75157-6 CrossRefGoogle Scholar
  44. 44.
    Zhu F, Tajkhorshid E, Schulten K (2004) Theory and simulation of water permeation in aquaporin-1. Biophys J 86(1):50–57. doi: 10.1016/S0006-3495(04)74082-5 CrossRefGoogle Scholar
  45. 45.
    Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112(5):1427–1434. doi: 10.1021/jp709845u CrossRefGoogle Scholar
  46. 46.
    Gong X, Li J, Lu H, Wan R, Li J, Hu J, Fang H (2007) A charge-driven molecular water pump. Nat Nanotechnol 2(11):709–712, http://www.nature.com/nnano/journal/v2/n11/suppinfo/nnano.2007.320_S1.html CrossRefGoogle Scholar
  47. 47.
    Li J, Gong X, Lu H, Li D, Fang H, Zhou R (2007) Electrostatic gating of a nanometer water channel. Proc Natl Acad Sci USA 104(10):3687–3692. doi: 10.1073/pnas.0604541104 CrossRefGoogle Scholar
  48. 48.
    Goldsmith J, Martens CC (2009) Pressure-induced water flow through model nanopores. Phys Chem Chem Phys 11(3):528–533. doi: 10.1039/B807823H CrossRefGoogle Scholar
  49. 49.
    Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113(23):10663–10675. doi: 10.1063/1.1320826 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations