How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

  • Chompoonut Rungnim
  • Rungroj Chanajaree
  • Thanyada Rungrotmongkol
  • Supot Hannongbua
  • Nawee Kungwan
  • Peter Wolschann
  • Alfred Karpfen
  • Vudhichai Parasuk
Original Paper

Abstract

The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

Keywords

Nucleobase-analog Graphene Density functional theory 

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896 CrossRefGoogle Scholar
  2. 2.
    Song B, Cuniberti G, Sanvito S, Fang HP (2012) Nucleobase adsorbed at graphene devices: enhance bio-sensorics. Appl Phys Lett 100(6):063101–063104. doi:10.1063/1.3681579
  3. 3.
    Yang M, Yao J, Duan Y (2013) Graphene and its derivatives for cell biotechnology. Analyst 138(1):72–86. doi:10.1039/c2an35744e CrossRefGoogle Scholar
  4. 4.
    Xu Z, Wang S, Li Y, Wang M, Shi P, Huang X (2014) Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl Mater Interfaces 6(19):17268–17276. doi:10.1021/am505308f
  5. 5.
    Shi S, Chen F, Ehlerding EB, Cai W (2014) Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjugate Chem 25(9):1609–1619. doi:10.1021/bc500332c
  6. 6.
    Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VTS, Nikkhah M, Shin SR, Krafft D, Dokmeci MR, Shum-Tim D, Khademhosseini A (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8):8050–8062. doi:10.1021/nn5020787
  7. 7.
    Zhang S, Yang K, Feng L, Liu Z (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49(12):4040–4049. doi:10.1016/j.carbon.2011.05.056 CrossRefGoogle Scholar
  8. 8.
    Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877. doi:10.1021/ja803688x
  9. 9.
    Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z (2010) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5(1):516–522. doi:10.1021/nn1024303
  10. 10.
    Panigrahi S, Bhattacharya A, Banerjee S, Bhattacharyya D (2012) Interaction of nucleobases with wrinkled graphene surface: dispersion corrected DFT and AFM studies. J Phys Chem C 116(7):4374–4379. doi:10.1021/jp207588s
  11. 11.
    Husale S, Sahoo S, Radenovic A, Traversi F, Annibale P, Kis A (2010) ssDNA binding reveals the atomic structure of graphene. Langmuir 26(23):18078–18082. doi:10.1021/la102518t
  12. 12.
    Liu F, Choi JY, Seo TS (2010) DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid. Chem Commun 46(16):2844–2846. doi:10.1039/b923656b CrossRefGoogle Scholar
  13. 13.
    Miliordos E, Aprà E, Xantheas SS (2014) Benchmark theoretical study of the π–π binding energy in the benzene dimer. J Phys Chem A 118(35):7568–7578. doi:10.1021/jp5024235
  14. 14.
    Ferguson KM (2008) Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 37(1):353–373. doi:10.1146/annurev.biophys.37.032807.125829
  15. 15.
    Janowski T, Pulay P (2007) High accuracy benchmark calculations on the benzene dimer potential energy surface. Chem Phys Lett 447(1–3):27–32. doi:10.1016/j.cplett.2007.09.003 CrossRefGoogle Scholar
  16. 16.
    Zhang C (2011) Shape and size effects in π–π interactions: face-to-face dimers. J Comput Chem 32(1):152–160. doi:10.1002/jcc.21612
  17. 17.
    Jha PC, Rinkevicius Z, Agren H, Seal P, Chakrabarti S (2008) Searching of potential energy curves for the benzene dimer using dispersion-corrected density functional theory. PCCP 10(19):2715–2721. doi:10.1039/b717983a CrossRefGoogle Scholar
  18. 18.
    Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC (2010) Higher-accuracy van der Waals density functional. Phys Rev B 82(8):081101. doi:10.1103/PhysRevB.82.081101 CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Accounts Chem Res 41(2):157–167. doi:10.1021/ar700111a
  20. 20.
    Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241. doi:10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  21. 21.
    Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228. doi:10.1002/wcms.30 CrossRefGoogle Scholar
  22. 22.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132(15):154104–154119. doi:10.1063/1.3382344
  23. 23.
    Reid SA, Nyambo S, Muzangwa L, Uhler B (2013) π-Stacking, C–H/π, and halogen bonding interactions in bromobenzene and mixed bromobenzene–benzene clusters. J Phys Chem A 117(50):13556–13563. doi:10.1021/jp407544c
  24. 24.
    Bandyopadhyay B, Cheng TC, Wheeler SE, Duncan MA (2012) Vibrational spectroscopy and theory of the protonated benzene dimer and trimer. J Phys Chem A 116(26):7065–7073. doi:10.1021/jp304091h
  25. 25.
    Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117(47):12590–12600. doi:10.1021/jp408166m
  26. 26.
    Lu X, Shi H, Chen J, Ji D (2012) Theoretical study of different substituent benzenes and benzene dimers blue-shifted hydrogen bonds. Comp Theor Chem 982:34–39. doi:10.1016/j.comptc.2011.12.005 CrossRefGoogle Scholar
  27. 27.
    Mishra BK, Karthikeyan S, Ramanathan V (2012) Tuning the C-H···π interaction by different substitutions in benzene-acetylene complexes. J Chem Theory Comput 8(6):1935–1942. doi:10.1021/ct300100h
  28. 28.
    Janowski T, Pulay P, Karunarathna AAS, Sygula A, Saebo S (2011) Convex-concave stacking of curved conjugated networks: benchmark calculations on the corannulene dimer. Chem Phys Lett 512(4–6):155–160. doi:10.1016/j.cplett.2011.07.030
  29. 29.
    Sherrill CD, Takatani T, Hohenstein EG (2009) An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S. J Phys Chem A 113(38):10146–10159. doi:10.1021/jp9034375
  30. 30.
    Ovaa H, Kuijl C, Neefjes J (2009) Recent and new targets for small molecule anti-cancer agents. Drug Discov Today Technol 6(1–4):e3–e11. doi:10.1016/j.ddtec.2010.01.001 CrossRefGoogle Scholar
  31. 31.
    Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Physisorption of nucleobases on graphene: density-functional calculations. Phys Rev B 76(3):033401. doi:10.1103/PhysRevB.76.033401
  32. 32.
    Ramraj A, Hillier IH, Vincent MA, Burton NA (2010) Assessment of approximate quantum chemical methods for calculating the interaction energy of nucleic acid bases with graphene and carbon nanotubes. Chem Phys Lett 484(4–6):295–298. doi:10.1016/j.cplett.2009.11.068 CrossRefGoogle Scholar
  33. 33.
    Umadevi D, Sastry GN (2011) Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J Phys Chem Lett 2(13):1572–1576. doi:10.1021/jz200705w
  34. 34.
    Kristian B, Svetla DC-K, Valentino RC, David CL, Elsebeth S (2011) A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding. J Phys Condens Matter 23(13):135001. doi:10.1088/0953-8984/23/13/135001 CrossRefGoogle Scholar
  35. 35.
    Varghese N, Mogera U, Govindaraj A, Das A, Maiti PK, Sood AK, Rao CNR (2009) Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem 10(1):206–210. doi:10.1002/cphc.200800459
  36. 36.
    Antony J, Grimme S (2008) Structures and interaction energies of stacked graphene-nucleobase complexes. Phys Chem Chem Phys 10(19):2722–2729. doi:10.1039/b718788b CrossRefGoogle Scholar
  37. 37.
    Le D, Kara A, Schröder E, Hyldgaard P, Rahman TS (2012) Physisorption of nucleobases on graphene: a comparative van der Waals study. J Phys Condens Matter 24(42):424210CrossRefGoogle Scholar
  38. 38.
    Wu M, Wang Q, Sun Q, Jena P (2013) Functionalized graphitic carbon nitride for efficient energy storage. J Phys Chem C 117(12):6055–6059. doi:10.1021/jp311972f
  39. 39.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. doi:10.1080/00268977000101561 CrossRefGoogle Scholar
  40. 40.
    Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? J Chem Phys 105(24):11024–11031. doi:10.1063/1.472902 CrossRefGoogle Scholar
  41. 41.
    Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05−2X and M06−2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4(12):1996–2000. doi:10.1021/ct800308k

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chompoonut Rungnim
    • 1
  • Rungroj Chanajaree
    • 2
  • Thanyada Rungrotmongkol
    • 3
    • 4
  • Supot Hannongbua
    • 5
  • Nawee Kungwan
    • 6
  • Peter Wolschann
    • 5
    • 7
    • 8
  • Alfred Karpfen
    • 7
  • Vudhichai Parasuk
    • 5
  1. 1.NANOTEC, National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
  2. 2.Metallurgy and Materials Science Research Institute (MMRI)Chulalongkorn UniversityBangkokThailand
  3. 3.Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Program in Bioinformatics and Computational Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  5. 5.Computational Chemistry Unit Cell, Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  6. 6.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  7. 7.Institute for Theoretical ChemistryUniversity of ViennaViennaAustria
  8. 8.Department of Pharmaceutical Technology and BiopharmaceuticsUniversity of ViennaViennaAustria

Personalised recommendations