Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach

  • Marquita Watkins
  • Natalia Sizochenko
  • Bakhtiyor Rasulev
  • Jerzy Leszczynski
Original Paper


The presence of polyhalogenated persistent organic pollutants (POPs), such as Cl/Br-substituted benzenes, biphenyls, diphenyl ethers, and naphthalenes has been identified in all environmental compartments. The exposure to these compounds can pose potential risk not only for ecological systems, but also for human health. Therefore, efficient tools for comprehensive environmental risk assessment for POPs are required. Among the factors vital for environmental transport and fate processes is melting point of a compound. In this study, we estimated the melting points of a large group (1419 compounds) of chloro- and bromo- derivatives of dibenzo-p-dioxins, dibenzofurans, biphenyls, naphthalenes, diphenylethers, and benzenes by utilizing quantitative structure—property relationship (QSPR) techniques. The compounds were classified by applying structure-based clustering methods followed by GA-PLS modeling. In addition, random forest method has been applied to develop more general models. Factors responsible for melting point behavior and predictive ability of each method were discussed.


Melting point POPs Organic pollutants Partial least squares QSPR Random forest 

Supplementary material

894_2016_2917_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1.25 mb)


  1. 1.
    de Lima Ribeiro FA, Ferreira M (2003) QSPR models of boiling point, octanol–water partition coefficient and retention time index of polycyclic aromatic hydrocarbons. J Mol Struc 663:109–126CrossRefGoogle Scholar
  2. 2.
    Nadal M, Espinosa G, Schuhmacher M, Domingo JL (2004) Patterns of PCDDs and PCDFs in human milk and food and their characterization by artificial neural networks. Chemosphere 54:1375–1382CrossRefGoogle Scholar
  3. 3.
    Ding G, Chen J, Qiao X, Huang L, Lin J, Chen X (2006) Quantitative relationships between molecular structures, environmental temperatures and solid vapor pressures of PCDD/Fs. Chemosphere 62:1057–1063CrossRefGoogle Scholar
  4. 4.
    Xu HY, Zou JW, Yu QS, Wang YH, Zhang JY, Jin HX (2007) QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere 66:1998–2010CrossRefGoogle Scholar
  5. 5.
    Ritter L, Solomon KR, Forget J, Stemeroff M, O'Leary C (1995) Persistent organic pollutants: an assessment report, International Programme on Chemical Safety. World Health Organization, CanadaGoogle Scholar
  6. 6.
    Balk S, Carpenter DO, Corra L, Diaz-Barriga MFR, Sly P, Ehrenstein OSV, Tirado MC (2010) Persistent organic pollutants: impact on child health. Geneva, Switzerland.Google Scholar
  7. 7.
    Nicolopoulou-Stamati P, Pitsos MA (2001) The Impact of endocrine disrupters on the female reproductive system. Hum Reprod Update 7:323–330CrossRefGoogle Scholar
  8. 8.
    Katritzky AR, Maran U, Lobanov VS, Karelson M (2000) Structurally diverse quantitative structure–property relationship correlations of technologically relevant physical properties. J Chem Inf Comput Sci 40:1–18CrossRefGoogle Scholar
  9. 9.
    Vasseur P, Cossu-Leguille C (2006) Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere 62:1033–1042CrossRefGoogle Scholar
  10. 10.
    Katritzky AR, Maran U, Karelson M, Lobanov VS (1997) Prediction of melting points for the substituted benzenes: a QSPR approach. J Chem Inf Comp Sci 37:913–919Google Scholar
  11. 11.
    Katritzky AR, Lomaka A, Petrukhin R, Jain R, Karelson M, Visser AE, Rogers RD (2002) QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Comp Sci 42:71–74CrossRefGoogle Scholar
  12. 12.
    Schultz TW, Cronin MTD, Walker JD, Aptula AO (2003) Quantitative structure–activity relationships (QSARs) in toxicology: a historical perspective. J Mol Struct 622:1–22CrossRefGoogle Scholar
  13. 13.
    Bolboaca SD, Jäntschi L (2013) Quantitative structure-activity relationships: linear regression modelling and validation strategies by example. Biomath 2(1):1–11CrossRefGoogle Scholar
  14. 14.
    Asadollahi T, Dadfarnia S, Shabani AM, Ghasemi JB, Sarkhosh M (2011) QSAR models for CXCR2 receptor antagonists based on the genetic algorithm for data preprocessing prior to application of the PLS linear regression method and design of the new compounds using in silico virtual screening. Molecules 16:1928–1955CrossRefGoogle Scholar
  15. 15.
    Gramatica P, Consolaro F, Pozzi S (2001) QSAR approach to POPs screening for atmospheric persistence. Chemosphere 43:655–664CrossRefGoogle Scholar
  16. 16.
    Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High T Scr 9:213–228Google Scholar
  17. 17.
    OECD (2014) A guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. (accessed July 13)
  18. 18.
    Bhhatarai B, Teetz W, Liu T, Öberg T, Jeliazkova N, Kochev N, Pukalov O, Tetko IV, Kovarich S, Papa E, Gramatica P (2011) CADASTER QSPR models for predictions of melting and boiling points of perfluorinated chemicals. Mol Inf 30:189–204CrossRefGoogle Scholar
  19. 19.
    Trohalaki S, Pachter R, Drake GW, Hawkins T (2005) Quantitative structure–property relationships for melting points and densities of ionic liquids. Energy Fuels 19:279–284CrossRefGoogle Scholar
  20. 20.
    Katritzky AR, Jain R, Lomaka A, Petrukhin R, Maran U, Karelson M (2001) Perspective on the relationship between melting points and chemical structure. Cryst Growth Des 1:261–265CrossRefGoogle Scholar
  21. 21.
    Godavarthy SS, Robinson RL Jr, Gasem KAM (2006) An improved structure–property model for predicting melting-point temperatures. Ind Eng Chem Res 45:5117–5126CrossRefGoogle Scholar
  22. 22.
    Murugan R, Grendze MP, Toomey J, Katrizky A, Karelson M, Lobanov V, Rachwal P (1994) Predicting physical properties from molecular structure. Chemtech, Washington DC 24:17–17Google Scholar
  23. 23.
    Hanson M, Rouvray D (1987) The use of topological indices to estimate the melting points of organic molecules. Graph Theor Topol Chem 51:201–208Google Scholar
  24. 24.
    Abramowitz R, Yalkowsky S (1990) Melting point, boiling point, and symmetry. Pharm Res 7:942–947CrossRefGoogle Scholar
  25. 25.
    Dearden JC (1991) The QSAR prediction of melting point, a property of environmental relevance. Sci Total Environ 109–110:59–68CrossRefGoogle Scholar
  26. 26.
    Charton M, Charton B (1994) Quantitative description of structural effects on melting points of substituted alkanes. J Phys Org Chem 7:196–206CrossRefGoogle Scholar
  27. 27.
    Gramatica P, Navas N, Todeschini R (1998) 3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs). Chemomet Intell Lab Syst 40(1):53–56CrossRefGoogle Scholar
  28. 28.
    Kušić H, Rasulev B, Leszczynska D, Leszczynski J, Koprivanac N (2009) Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study. Chemosphere 75:1128–1134CrossRefGoogle Scholar
  29. 29.
    Puzyn T, Gajewicz A, Rybacka A, Haranczyk M (2011) Global versus local QSPR models for persistent organic pollutants: balancing between predictivity and economy. Struct Chem 22:873–884CrossRefGoogle Scholar
  30. 30.
    Howard PH, Muir DC (2011) Identifying new persistent and bioaccumulative organics among chemicals in commerce II: pharmaceuticals. Environ Sci Tech 45:6938–6946CrossRefGoogle Scholar
  31. 31.
    Gajewicz A, Haranczyk M, Puzyn T (2011) Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated persistent organic pollutants with QSPR: how different are chlorinated and brominated congeners? Atmos Environ 44:1428–1436Google Scholar
  32. 32.
    Odziomek K, Gajewicz A, Haranczyk M, Puzyn T (2013) Reliability of environmental fate modeling results for POPs based on various methods of determining the air/water partition coefficient (log Kaw). Atmos Environ 73:177–184CrossRefGoogle Scholar
  33. 33.
    Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzyński M, Worth AP (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22:795–804CrossRefGoogle Scholar
  34. 34.
    Puzyn T, Mostrag-Szlichtyng A, Falandysz J, Kholod Y, Leszczynski J (2009) Predicting water solubility of congeners: chloronaphthalenes—a case study. J Hazard Mat 170:1014–1022CrossRefGoogle Scholar
  35. 35.
    Coleman WF, Arumainayagam CR (1998) HyperChem 5 (by Hypercube Inc). J Chem Ed 75:416Google Scholar
  36. 36.
    Vargyas M, Papp J, Csizmadia F, Csepregi S, Papp A, Vadasz P (2008) Maximum common substructure based hierarchical clustering, Noordwijkerhout, NetherlandsGoogle Scholar
  37. 37.
    Mauri A, Consonni V, Pavan M, Todeschini R (2006) Dragon software: an easy approach to molecular descriptor calculations. Match 56: 237–248Google Scholar
  38. 38.
    EigenVector Research (2014) EigenVector Research, I. PLS Toolbox, 7.8.2. Scholar
  39. 39.
    MATLAB (2014) MATLAB (R2014a), version 8.3. Natick, MAGoogle Scholar
  40. 40.
    Hasegawa K, Funatsu K (2000) Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships. SAR QSAR Environ Res 11:189–209Google Scholar
  41. 41.
    Liaw A, News MWR (2002) Classification and regression by random forest. R News 2:18–22Google Scholar
  42. 42.
    Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  43. 43.
    Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701CrossRefGoogle Scholar
  44. 44.
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marquita Watkins
    • 1
  • Natalia Sizochenko
    • 1
  • Bakhtiyor Rasulev
    • 1
    • 2
  • Jerzy Leszczynski
    • 1
  1. 1.Interdisciplinary Center for Nanotoxicity, Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA
  2. 2.Center for Computationally Assisted Science and TechnologyNorth Dakota State UniversityFargoUSA

Personalised recommendations