The stacking interactions of bipyridine complexes: the influence of the metal ion type on the strength of interactions

  • Dušan N. Sredojević
  • Predrag V. Petrović
  • Goran V. Janjić
  • Edward N. Brothers
  • Michael B. Hall
  • Snežana D. ZarićEmail author
Original Paper


The strength of the stacking interactions in the bipy complexes of nickel, palladium, and platinum, [M(CN)2 bipy]2 (M = Ni, Pd, Pt), was calculated using the ωB97xD/def2-TZVP method. The results show that for all considered geometries, interactions are the strongest for platinum, and weakest for nickel complexes, as a result of higher dispersion contributions of platinum over the palladium and nickel complexes. It was also shown that strength of interactions considerably rises with an increase of the stacking overlap area. As a consequence of the favorable electrostatic term, the strength of interactions also rises when metal atom and cyano ligands are involved in the overlap with bipy ligand. The strongest interaction was calculated in the platinum complex, for the geometry that has overlap of metal and cyano ligands with bipy ligand with an energy of -39.80 kcal mol-1. The energies for similar geometries of palladium and nickel complexes are -34.60 and -32.45 kcal mol-1. These energies, remarkably, exceed the strength of the stacking interactions between organic aromatic molecules. These results can be of importance in all systems with stacking interactions, from materials to biomolecules.


Bipy complexes DFT calculations Interaction energy Stacking interactions 



We acknowledge financial support from the Qatar National Research Fund under NPRP Grant No. 05-318-1-063 and Serbian Ministry of Education, Science and Technological Development (Grant 172065). Computer time was provided by the TAMUQ Supercomputer Facility.

Supplementary material

894_2015_2888_MOESM1_ESM.pdf (215 kb)
ESM 1 (PDF 215 kb)


  1. 1.
    O’Sullivan MC et al. (2015) Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg Med Chem 23:96–1010Google Scholar
  2. 2.
    Ninković DB, Andrić JM, Malkov SN, Zarić SD (2014) What are the preferred horizontal displacements of aromatic–aromatic interactions in proteins? Comparison with the calculated benzene–benzene potential energy surface. Phys Chem Chem Phys 16:11173–11177CrossRefGoogle Scholar
  3. 3.
    Thio Y, Toh SW, Xue F, Vittal J (2014) Self-assembly of a 15-nickel metallamacrocyclic complex derived from the L-glutamic acid Schiff base ligand. J Dalton Trans 43:5998–6001CrossRefGoogle Scholar
  4. 4.
    Woziwodzka A, Gołuński G, Wyrzykowski D, Kaźmierkiewicz R, Piosik J (2013) Caffeine and Other Methylxanthines as Interceptors of Food-Borne Aromatic Mutagens: Inhibition of Trp-P-1 and Trp-P-2 Mutagenic Activity. Chem Res Toxicol 26:1660–1673CrossRefGoogle Scholar
  5. 5.
    Ninković DB, Janjić GV, Veljković DŽ, Sredojević DN, Zarić SD (2011) What arethe preferred horizontal displacements in parallel aromatic–aromatic interactions? significant interactions at large displacements. ChemPhysChem 12:3511–3514Google Scholar
  6. 6.
    Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int Ed 50:4808–4842Google Scholar
  7. 7.
    Geronimo I, Lee EC, Singh NJ, Kim KS (2010) How different are electron-rich and electron-deficient π interactions? J Chem Theory Comput 6:1931–1934Google Scholar
  8. 8.
    Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic−aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132:2719–2728Google Scholar
  9. 9.
    Hohenstein EG, Sherrill CD (2009) Effects of heteroatoms on aromatic π−π interactions: benzene−pyridine and pyridine dimer. J Phys Chem A 113:878–886Google Scholar
  10. 10.
    Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew. Chem. Int Ed 48:3924–3977Google Scholar
  11. 11.
    Bludsky O, Rubes M, Soldan P, Nachtigall P (2008) Investigation of the benzene-dimer potential energy surface: DFT/CCSD(T) correction scheme. J Chem Phys 128:114102/1–114102/8CrossRefGoogle Scholar
  12. 12.
    Janowski T, Pulay P. High accuracy benchmark calculations on the benzene dimer potential energy surface. Chem Phys Lett 447:27-32Google Scholar
  13. 13.
    Schweizer WB, Dunitz JD (2006) Quantum mechanical calculations for benzene dimer energies: present problems and future challenges. J Chem Theory Comput 2:288–291Google Scholar
  14. 14.
    Piacenza M, Grimme S (2005) Van der Waals interactions in aromatic systems: structure and energetics of dimers and trimers of pyridine. ChemPhysChem 6:1554-8Google Scholar
  15. 15.
    Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for π−π interactions: the benzene dimer. J Am Chem Soc 124:10887–10893Google Scholar
  16. 16.
    Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2012) Origin of attraction and directionality of the π/π interaction: model chemistry calculations of benzene dimer interaction. J Am Chem Soc 124:104–112CrossRefGoogle Scholar
  17. 17.
    Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-gga density functionals evaluation with the extended gmtkn30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7:291–309Google Scholar
  18. 18.
    Langner KM, Sokalski WA, Leszczynski J. (2007) Intriguing relations of interaction energy components in stacked nucleic acids. J Chem Phys 127:111102-1-111102-4Google Scholar
  19. 19.
    Rezač J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7:2427–2438Google Scholar
  20. 20.
    Sponer J, Riley KE, Hobza P (2008) Nature and magnitude of aromatic stacking of nucleic acid bases. Phys Chem Chem Phys 10:2595–2610CrossRefGoogle Scholar
  21. 21.
    Lee E et al. (2007) Understanding of assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111:3446–3457Google Scholar
  22. 22.
    Jurečka P, Šponer J, Černy J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theory Comput 1:415–432Google Scholar
  24. 24.
    Blagojević JP, Zarić SD (2015) Stacking interactions of hydrogen-bridged rings–stronger than the stacking of benzene molecules. Chem Commun 51:12989–12991Google Scholar
  25. 25.
    Janjić GV, Veljković DŽ, Zarić SD (2011) Water/aromatic parallel alignment interactions significant interactions at large horizontal displacements. Cryst Growth Des 11:2680–2683Google Scholar
  26. 26.
    Selvakumar PM, Suresh E, Subramanian PS (2009) Single stranded helical supramolecular architecture with a left handed helical water chain in ternary copper(II) tryptophan/diamine complexes. Polyhedron 28:245–252CrossRefGoogle Scholar
  27. 27.
    Ostojić BD, Janjić GV, Zarić SD (2008) Parallel alignment of water and aryl rings—crystallographic and theoretical evidence for the interaction. Chem Commun 48:6546–6548CrossRefGoogle Scholar
  28. 28.
    Pucci D et al. (2006) Synthesis and anticancer activity of cyclopalladated complexes containing 4-hydroxy-acridine. J Inorg Biochem 100:1575–1578CrossRefGoogle Scholar
  29. 29.
    Craven E, Zhang C, Janiak C, Rheinwald G, Lang H (2003) Synthesis, structure and solution chemistry of (5,5’-dimethyl-2,2’- bipyridine)(IDA)copper(II) and structural comparison with aqua(IDA)(1,10-phenanthroline)copper(II) (IDA = iminodiacetato). Z Anorg Allg Chem 629:2282–2290Google Scholar
  30. 30.
    Khavasi HR, Sadegh BM (2015) Influence of N-heteroaromatic π–π stacking on supramolecular assembly and coordination geometry; effect of a single-atom change in the ligand. Dalton Trans 44:5488–5502CrossRefGoogle Scholar
  31. 31.
    Tiekink ERT (2014) Molecular crystals by design? Chem Commun 50:11079–11082CrossRefGoogle Scholar
  32. 32.
    Melnic E et al. (2014) Robust packing patterns and luminescence quenching in mononuclear [Cu(II)(phen)2] sulfates. J Phys Chem C 118:30087–30100Google Scholar
  33. 33.
    Zhao Y et al. (2015) Five Mn(II) coordination polymers based on 2,3′,5,5′-biphenyl tetracarboxylic acid: syntheses, structures, and magnetic properties. Cryst Growth Des 15:966–974Google Scholar
  34. 34.
    Petrović PV, Janjić GV, Zarić SD (2014) Stacking interactions between square-planar metal complexes with 2,2′-bipyridine ligands. Analysis of Crystal Structures and Quantum Chemical Calculations Cryst Growth Des 14:3880–3889Google Scholar
  35. 35.
    Basu Baul TS et al. (2013) The influence of counter ion and ligand methyl substitution on the solid-state structures and photophysical properties of mercury(II) complexes with (E)-N-(pyridin-2-ylmethylidene)arylamines. Dalton Trans 42:1905–1920CrossRefGoogle Scholar
  36. 36.
    Hosseini-Monfared H, Pousaneh E, Sadighian S, Ng SW, Tiekink ERT (2013) Syntheses, structures, and catalytic activity of copper(II)-aroylhydrazone complexes. Z Anorg Allg Chem 639:435–442Google Scholar
  37. 37.
    Molčanov K, Jurić M, Kojić-Prodić B (2013) Stacking of metal chelating rings with π-systems in mononuclear complexes of copper(II) with 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone (chloranilic acid) and 2,2′-bipyridine ligands. Dalton Trans 42:15756–15765CrossRefGoogle Scholar
  38. 38.
    Akine S, Varadi Z, Nabeshima T (2013) Synthesis of planar metal complexes and the stacking abilities of naphthalenediol-based acyclic and macrocyclic salen-type ligands. Eur J Inorg Chem 35:5987–5998Google Scholar
  39. 39.
    Konidaris KF, Tsipis AC, Kostakis GE (2012) Shedding light on intermolecular metal–organic ring interactions by theoretical studies. ChemPlusChem 77:354–360Google Scholar
  40. 40.
    Konidaris KF et al. (2012) Supramolecular assemblies involving metal–organic ring interactions: heterometallic Cu(II)–Ln(III) two-dimensional coordination polymers. CrystEngComm 14:1842–1849CrossRefGoogle Scholar
  41. 41.
    Sredojević DN, Vojislavljević D, Tomić ZD, Zarić SD (2012) Parallel stacking interactions in square-planar transition-metal complexes containing fused chelate and C6-aromatic rings. Acta Cryst B68:261–265CrossRefGoogle Scholar
  42. 42.
    Janjić GV, Petrović PV, Ninković DB, Zarić SD (2011) Geometries of stacking interactions between phenanthroline ligands in crystal structures of square-planar metal complexes. J Mol Model 17:2083–2092CrossRefGoogle Scholar
  43. 43.
    Ni Q-L, Jiang X-F, Gui L-C, Wang X-J, Yang K-G, Bi X-S (2011) Synthesis, structures and characterization of a series of Cu(I)-diimine complexes with labile N, N′-bis((diphenylphosphino)methyl)naphthalene-1,5-diamine: diverse structures directed by π–π stacking interactions. New J Chem 35:2471–2476CrossRefGoogle Scholar
  44. 44.
    Konidaris KF, Powell AK, Kostakis GE (2011) Peculiar structural findings in coordination chemistry of malonamide–N, N′-diacetic acid. CrystEngComm 13:5872–5876CrossRefGoogle Scholar
  45. 45.
    Janjić G, Andrić J, Kapor A, Bugarčić ZD, Zarić SD (2010) Classification of stacking interaction geometries of terpyridyl square-planar complexes in crystal structures. CrystEngComm 12:3773–3779Google Scholar
  46. 46.
    Sredojević DN, Tomić ZD, Zarić SD (2010) Evidence of chelate−chelate stacking interactions in crystal structures of transition-metal complexes. Cryst Growth Des 10:3901–3908Google Scholar
  47. 47.
    Wang X-J et al. (2008) Assembly molecular architectures based on structural variation of metalloligand [Cu(PySal)2] (PySal = 3-pyridylmethylsalicylideneimino). Polyhedron 27:2634–2642CrossRefGoogle Scholar
  48. 48.
    Granifo J, Vargas M, Garland MT, Ibanez A, Gavino R, Baggio R (2008) The novel ligand 4′-phenyl-3,2′:6′,3′′-terpyridine (L) and the supramolecular structure of the dinuclear complex [Zn2(μ-L)(acac)4] · H2O (acac = acetylacetonato). Inorg Chem Commun 11:1388–1391CrossRefGoogle Scholar
  49. 49.
    Sredojević D, Bogdanović GA, Tomić ZD, Zarić SD (2007) Stacking vs. CH–π interactions between chelate and aryl rings in crystal structures of square-planar transition metal complexes. CrystEngComm 9:793–798CrossRefGoogle Scholar
  50. 50.
    Tomić ZD, Sredojević D, Zarić SD (2006) Stacking interactions between chelate and phenyl rings in square-planar transition metal complexes. Cryst Growth Des 6:29–31Google Scholar
  51. 51.
    Abram U, Castineiras A, Garcia-Santos I, Rodriguez-Riobo R (2006) Symmetrisation in the interaction of chloro[2-(dimethylaminomethyl)phenyl-C1]mercury(II) with thiosemicarbazone derivatives of pyridine-2-carboxamide and pyrazin-2-carboxamide. Eur J Inorg Chem 15:3079–3087Google Scholar
  52. 52.
    Tomić ZD, Novaković SB, Zarić SD (2004) Intermolecular interactions between chelate rings and phenyl rings in square-planar copper(II) complexes. Eur J Inorg Chem 11:2215-2218Google Scholar
  53. 53.
    Philip V, Suni V, Kurup MRP, Nethaji M (2004) Structural and spectral studies of nickel(II) complexes of di–2-pyridyl ketone N4, N4-(butane-1,4-diyl) thiosemicarbazone. Polyhedron 23:1225–1233CrossRefGoogle Scholar
  54. 54.
    Tomić ZD, Leovac VM, Pokorni SV, Zobel D, Zarić SD, (2003) Crystal structure of bis[acetone-1-naphthoylhydrazinato(−1)]copper(II) and investigations of intermolecular interactions. Eur J Inorg Chem 6:1222-1226Google Scholar
  55. 55.
    Malenov DP, Ninković DN, Zarić SD (2015) Stacking of metal chelates with benzene: can dispersion-corrected DFT be used to calculate organic–inorganic stacking? ChemPhysChem 16:761–768Google Scholar
  56. 56.
    Malenov DP, Ninković DB, Sredojević DN, Zarić SD (2014) Stacking of benzene with metal chelates: calculated CCSD(T)/CBS interaction energies and potential-energy curves. ChemPhysChem 15:2458–2461Google Scholar
  57. 57.
    Sredojević DN, Ninković DB, Janjić GV, Zhou J, Hall MB, Zarić SD (2013) Stacking interactions of Ni(acac) chelates with benzene: calculated interaction energies. ChemPhysChem 14:1797–1800Google Scholar
  58. 58.
    Dang L, Shibl M, Yang X, Harrison D, Alak A, Lough A, Fekl U, Brothers E, Hall M (2013) Apparent anti-woodward–hoffmann addition to a nickel bis(dithiolene) complex: the reaction mechanism involves reduced, dimetallic intermediates. Inorg Chem 52:3711–3723Google Scholar
  59. 59.
    Dang L et al. (2012) The mechanism of alkene addition to a nickel bis(dithiolene) complex: the role of the reduced metal complex. J Am Chem Soc 134:4481–4484Google Scholar
  60. 60.
    Wang K, Stiefel EI (2001) Toward separation and purification of olefins using dithiolene complexes: an electrochemical approach. Science 291:106–109Google Scholar
  61. 61.
    Harrison DJ, Nguyen N, Lough AJ, Fekl U (2006) New insight into reactions of Ni(S2C2(CF3)2)2 with simple alkenes: alkene adduct versus dihydrodithiin product selectivity is controlled by [Ni(S2C2(CF3)2)2]- anion. J Am Chem Soc 128:11026–11027CrossRefGoogle Scholar
  62. 62.
    Fan Y, Hall MB (2002) How electron flow controls the thermochemistry of the addition of olefins to nickel dithiolenes: predictions by density functional theory. J Am Chem Soc 124:12076–12077CrossRefGoogle Scholar
  63. 63.
    Li H, Brothers E, Hall M (2014) Computational exploration of alternative catalysts for olefin purification: cobalt and copper analogues inspired by nickel bis(dithiolene) electrocatalysis. Inorg Chem 53:9679–9691CrossRefGoogle Scholar
  64. 64.
    Chandrasekharam M et al. (2012) One bipyridine and triple advantages: tailoring ancillary ligands in ruthenium complexes for efficient sensitization in dye solar cells. J Mater Chem 22:18757–18760CrossRefGoogle Scholar
  65. 65.
    Del Guerzo A, Leroy S, Fages F, Schmehl RH, Photophysics of Re(I) and Ru(II) diimine complexes covalently linked to pyrene: contributions from intra-ligand charge transfer states. Inorg. Chem. 41:359-366Google Scholar
  66. 66.
    Hagerman ME, Salamone SJ, Herbst RW, Payeur AL (2003) Tris(2,2‘-bipyridine)ruthenium(II) cations as photoprobes of clay tactoid architecture within hectorite and laponite films. Chem Mater 15:443–450Google Scholar
  67. 67.
    Ma Y, Gao Y, Wang Y, Li Y, Yang X (2011) Synthesis and application of new ruthenium dye containing 9,9-[di-(2-ethylhexane]-4,5-diazafluorene ligand. Mod Appl Sci 5:232–235Google Scholar
  68. 68.
    Newkome GR, Patri AK, Holder E, Schubert US (2004) Synthesis of 2,2′-bipyridines: versatile building blocks for sexy architectures and functional nanomaterials. Eur J Org Chem 2:235–254Google Scholar
  69. 69.
    Scott MJ, Nelson JJ, Caramori S, Bignozzi CA, Elliott CM (2007) cis-Dichloro-bis(4,4‘-dicarboxy-2,2-bipyridine)osmium(II)-modified optically transparent electrodes: application as cathodes in stacked dye-sensitized solar cells. Inorg Chem 46:10071–10078Google Scholar
  70. 70.
    Zhang B, Shi S, Shi W, Sun Z, Kong X, Wei M, Duan X (2012) Assembly of ruthenium(II) complex/layered double hydroxide ultrathin film and its application as an ultrasensitive electrochemiluminescence sensor. Electrochim Acta 67:133–139CrossRefGoogle Scholar
  71. 71.
    Sato Y, Uosaki K (1995) Electrochemical and electrogenerated chemiluminescence properties of tris(2,2′-bipyridine)ruthenium(II)-tridecanethiol derivative on ITO and gold electrodes. J Electroanal Chem 384:57–66CrossRefGoogle Scholar
  72. 72.
    Su M, Liu S (2010) Solid-state electrochemiluminescence analysis with coreactant of the immobilized tris(2,2′-bipyridyl) ruthenium. Anal Biochem 402:1–12CrossRefGoogle Scholar
  73. 73.
    Schubert US, Eschbaumer C, Hochwimmer G (1998) Directed synthesis of monofunctionalized 5,5′-disubstituted 2,2′-bipyridines and their first application as metallo-supramolecular initiators. Tetrahedron Lett 39:8643–8644CrossRefGoogle Scholar
  74. 74.
    Schubert US, Kersten JL, Pemp AE, Eisenbach CD, Newkome GR (1998) A new generation of 6,6′-disubstituted 2,2′-bipyridines: towards novel oligo(bipyridine) building blocks for potential applications in materials science and supramolecular chemistry. Eur J Org Chem 11:2573–2581Google Scholar
  75. 75.
    Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G (2011) Interaction of copper(II) with the non-steroidal anti-inflammatory drugs naproxen and diclofenac: synthesis, structure, DNA- and albumin-binding. J Inorg Biochem 105:476–489Google Scholar
  76. 76.
    Hong X-L, Liang Z-H, Zeng M-H (2011) Ruthenium(II) complexes: structure, DNA-binding, photocleavage, antioxidant activity, and theoretical studies. J Coord Chem 64:3792–3807Google Scholar
  77. 77.
    Patel MN, Dosi PA, Bhatt BS (2012) Square planar palladium (II) complexes of bipyridines: synthesis, characterization and biological studies. J Coord Chem 65:3833–3844CrossRefGoogle Scholar
  78. 78.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford Google Scholar
  79. 79.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  80. 80.
    Bergman DL, Laaksonen L, Laaksonen A (1970) Visualization of solvation structures in liquid mixtures. J Mol Graphics Model 15:301–306Google Scholar
  81. 81.
    Murray JS, Shields ZP, Lane P, Macaveiu L, Bulat FA (2013) The average local ionization energy as a tool for identifying reactive sites on defect-containing model graphene systems. J Mol Model 19:2825–2833CrossRefGoogle Scholar
  82. 82.
    Bondi A (1964) Van der Waals volumes and radii. Phys Chem Chem Phys 68:441–451Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dušan N. Sredojević
    • 1
    • 2
  • Predrag V. Petrović
    • 1
    • 2
  • Goran V. Janjić
    • 3
  • Edward N. Brothers
    • 1
  • Michael B. Hall
    • 4
  • Snežana D. Zarić
    • 1
    • 5
    Email author
  1. 1.Department of ChemistryTexas A&M University at QatarDohaQatar
  2. 2.Innovation CenterDepartment of ChemistryBelgradeSerbia
  3. 3.Institute of Chemistry, Technology and Metallurgy, Njegoseva 12University of BelgradeBelgradeSerbia
  4. 4.Department of ChemistryTexas A&M University College StationTexasUSA
  5. 5.Department of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations