Journal of Molecular Modeling

, 21:291 | Cite as

Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols

  • Florent Di MeoEmail author
  • Imene Bayach
  • Patrick Trouillas
  • Juan-Carlos Sancho-García
Original Paper


Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest.

Graphical abstract

Weakly bound natural polyphenolsᅟ


DFT-D Natural polyphenols Non-covalent interactions 



The authors acknowledge computational support from “CALI” (“CAlcul en LImousin”). FDM acknowledges financial support from the Swedish Research Council (Grant No. 621-2014-4646) and SNIC (Swedish National Infrastructure for Computing) for providing computer resources. The work in Limoges (IB and PT) is supported by the “Conseil Régional du Limousin”. PT gratefully acknowledges the support by the Operational Program Research and Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic). IB gratefully acknowledges financial support from “Association Djerbienne en France”.

Compliance with ethical standards

Supporting information

Description of non-covalent refinement within DFT formalism; DFT-D3 parameters for studied functionals; Interaction energies for studied functionals with S66, HB23, and NCCE31 databases; Global statistical analysis including MAD, RMSD, and MD for S66, HB23, NCCE31, and S12L databases; XYZ-coordinates of seven non-covalent polyphenol systems and corresponding stand-alone polyphenols; Assessment of RIJCOSX reliability to energy minimum for C:Q system

Supplementary material

894_2015_2838_MOESM1_ESM.pdf (4.5 mb)
ESM 1 (PDF 4608 kb)


  1. 1.
    Rice-Evans CA, Packer L (1998) Flavonoids in health and disease. American Chemical Society (ACS). Dekker, New YorkGoogle Scholar
  2. 2.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747Google Scholar
  3. 3.
    Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011CrossRefGoogle Scholar
  4. 4.
    Saller R, Meier R, Brignoli R (2001) The use of silymarin in the treatment of liver diseases. Drugs 61:2035–2063CrossRefGoogle Scholar
  5. 5.
    Gazak R, Marhol P, Purchartova K, Monti D, Biedermann D, Riva S, Cvak L, Kren V (2010) Large-scale separation of silybin diastereoisomers using lipases. Process Biochem 45:1657–1663CrossRefGoogle Scholar
  6. 6.
    Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363CrossRefGoogle Scholar
  7. 7.
    Snyder SA, Gollner A, Chiriac MI (2011) Regioselective reactions for programmable resveratrol oligomer synthesis. Nature 474:461–466CrossRefGoogle Scholar
  8. 8.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: h-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922CrossRefGoogle Scholar
  9. 9.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor Chem Acc 111:210–216CrossRefGoogle Scholar
  10. 10.
    Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) The inactivation of lipid peroxide radical by quercetin. A theoretical insight. Phys Chem Chem Phys 12:7662–7670CrossRefGoogle Scholar
  11. 11.
    Quartarolo AD, Russo N (2011) A computational study (TDDFT and RICC2) of the electronic spectra of pyranoanthocyanins in the gas phase and solution. J Chem Theory Comput 7:1073–1081CrossRefGoogle Scholar
  12. 12.
    Di Meo F, Lemaur V, Cornil J, Lazzaroni R, Duroux J-L, Olivier Y, Trouillas P (2013) Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem A 117:2082–2092CrossRefGoogle Scholar
  13. 13.
    Rustioni L, Di Meo F, Guillaume M, Failla O, Trouillas P (2013) Tuning color variation in grape anthocyanins at the molecular scale. Food Chem 141:4349–4357CrossRefGoogle Scholar
  14. 14.
    Bayach I, Sancho-García JC, Di Meo F, Weber JFF, Trouillas P (2013) π-Stacked polyphenolic dimers: a case study using dispersion-corrected methods. Chem Phys Lett 578:120–125CrossRefGoogle Scholar
  15. 15.
    Di Meo F, Sancho García JC, Dangles O, Trouillas P (2012) Highlights on anthocyanin pigmentation and copigmentation: a matter of flavonoid π-Stacking complexation to be described by DFT-D. J Chem Theory Comput 8:2034–2043CrossRefGoogle Scholar
  16. 16.
    Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Vitic 52:67–87Google Scholar
  17. 17.
    Nave F, Brás NF, Cruz L, Teixeira N, Mateus N, Ramos MJ, Di Meo F, Trouillas P, Dangles O, De Freitas V (2012) Influence of a flavan-3-ol substituent on the affinity of anthocyanins (Pigments) toward vinylcatechin dimers and proanthocyanidins (Copigments). J Phys Chem B 116:14089–14099CrossRefGoogle Scholar
  18. 18.
    Velu SS, Di Meo F, Trouillas P, Sancho García J-C, Weber J-FF (2013) Regio- and stereocontrolled synthesis of oligostilbenoids: theoretical highlights at the supramolecular level. J Nat Prod 76:538–546CrossRefGoogle Scholar
  19. 19.
    Velu SS, Thomas NF, Weber J-FF (2012) Strategies and methods for the syntheses of natural oligomeric stilbenoids and analogues. Curr Org Chem 16:605–662CrossRefGoogle Scholar
  20. 20.
    Velu SS, Buniyamin I, Ching LK, Feroz F, Noorbatcha I, Gee LC, Awang K, Wahab IA, Weber J-FF (2008) Regio- and stereoselective biomimetic synthesis of oligostilbenoid dimers from resveratrol analogues: influence of the solvent, oxidant, and substitution. Chem – A Eur J 14:11376–11384CrossRefGoogle Scholar
  21. 21.
    Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11:153–177CrossRefGoogle Scholar
  22. 22.
    Sousa A, Araújo P, Cruz L, Brás NF, Mateus N, De Freitas V (2014) Evidence for copigmentation interactions between deoxyanthocyanidin derivatives (oaklins) and common copigments in wine model solutions. J Agric Food ChemGoogle Scholar
  23. 23.
    Dangles O (2012) Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Curr Org Chem 16:692–714CrossRefGoogle Scholar
  24. 24.
    Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Di Meo F, Hasan MH, Adam A, Ismail NH, Weber JFF, Trouillas P (2013) Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. J Comput Aided Mol Des 27:951–964CrossRefGoogle Scholar
  25. 25.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473CrossRefGoogle Scholar
  26. 26.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  27. 27.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132Google Scholar
  28. 28.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  29. 29.
    Gráfová L, Pitoňák M, Řezáč J, Hobza P (2010) Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set. J Chem Theory Comput 6:2365–2376CrossRefGoogle Scholar
  30. 30.
    Jurečka P, Černý J, Hobza P, Salahub DR (2007) Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem 28:555–569CrossRefGoogle Scholar
  31. 31.
    Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116:515–524CrossRefGoogle Scholar
  32. 32.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401CrossRefGoogle Scholar
  33. 33.
    Vydrov OA, Van Voorhis T (2010) Nonlocal van der Waals density functional: the simpler the better. J Chem Phys 133:244103CrossRefGoogle Scholar
  34. 34.
    Hujo W, Grimme S (2011) Performance of the van der Waals density functional VV10 and (hybrid)GGA variants for thermochemistry and noncovalent interactions. J Chem Theory Comput 7:3866–3871CrossRefGoogle Scholar
  35. 35.
    Trouillas P, Fagnere C, Lazzaroni R, Calliste C, Marfak A, Duroux J-L (2004) A theoretical study of the conformational behavior and electronic structure of taxifolin correlated with the free radical-scavenging activity. Food Chem 88:571–582CrossRefGoogle Scholar
  36. 36.
    Anouar EH, Gierschner J, Duroux J-L, Trouillas P (2012) UV/Visible spectra of natural polyphenols: a time-dependent density functional theory study. Food Chem 131:79–89CrossRefGoogle Scholar
  37. 37.
    Millot M, Di Meo F, Tomasi S, Boustie J, Trouillas P (2012) Photoprotective capacities of lichen metabolites: a joint theoretical and experimental study. J Photochem Photobiol B 111:17–26CrossRefGoogle Scholar
  38. 38.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  39. 39.
    Becke AD, Johnson ER (2005) Exchange-hole dipole moment and the dispersion interaction. J Chem Phys 122:154104CrossRefGoogle Scholar
  40. 40.
    Johnson ER, Becke AD (2006) A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. J Chem Phys 124:174104CrossRefGoogle Scholar
  41. 41.
    Johnson ER, Becke AD (2005) A post-Hartree–Fock model of intermolecular interactions. J Chem Phys 123:024101CrossRefGoogle Scholar
  42. 42.
    Řezáč J, Riley KE, Hobza P (2011) S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7:2427–2438CrossRefGoogle Scholar
  43. 43.
    DiLabio GA, Johnson ER, Otero-de-la-Roza A (2013) Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. Phys Chem Chem Phys 15:12821–12828CrossRefGoogle Scholar
  44. 44.
    Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A 109:5656–5667CrossRefGoogle Scholar
  45. 45.
    Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theory Comput 1:415–432CrossRefGoogle Scholar
  46. 46.
    Peverati R, Truhlar D (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc A 372:20120476CrossRefGoogle Scholar
  47. 47.
    Grimme S (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem – A Eur J 18:9955–9964CrossRefGoogle Scholar
  48. 48.
    Neese F (2012) The ORCA program system. Wiley Interdisc Rev: Comput Mol Sci 2:73–78Google Scholar
  49. 49.
    Grimme S (2011) DFT-D3 - A dispersion correction for density functionals, Hartree-Fock and semi-empirical quantum chemical methods. Accessed May 23th, 2013
  50. 50.
    Neese F, Wennmohs F, Hansen A, Becker U (2009) Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem Phys 356:98–109CrossRefGoogle Scholar
  51. 51.
    Neese F (2003) An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J Comput Chem 24:1740–1747CrossRefGoogle Scholar
  52. 52.
    Dimitric MJM, Baranac JM, Brdaric TP (2005) Electronic and infrared vibrational analysis of cyanidin-quercetin copigment complex. Spectrochim Acta A 62A:673–680CrossRefGoogle Scholar
  53. 53.
    Sinnecker S, Rajendran A, Klamt A, Diedenhofen M, Neese F (2006) Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (Direct COSMO-RS). J Phys Chem A 110:2235–2245CrossRefGoogle Scholar
  54. 54.
    Risthaus T, Grimme S (2013) Benchmarking of london dispersion-accounting density functional theory methods on very large molecular complexes. J Chem Theory Comput 9:1580–1591CrossRefGoogle Scholar
  55. 55.
    Grimme S, Mück-Lichtenfeld C, Antony J (2007) Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes. J Phys Chem C 111:11199–11207Google Scholar
  56. 56.
    Martin JML (2013) What can we learn about dispersion from the conformer surface of n-Pentane? J Phys Chem A 117:3118–3132CrossRefGoogle Scholar
  57. 57.
    Grimme S (2003) Improved second-order Møller--Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118:9095–9102CrossRefGoogle Scholar
  58. 58.
    Riley KE, Platts JA, Řezáč J, Hobza P, Hill JG (2012) Assessment of the performance of MP2 and MP2 variants for the treatment of noncovalent interactions. J Phys Chem A 116:4159–4169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Florent Di Meo
    • 1
    Email author
  • Imene Bayach
    • 2
  • Patrick Trouillas
    • 3
    • 4
  • Juan-Carlos Sancho-García
    • 5
  1. 1.Division of Theoretical Chemistry, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
  2. 2.Laboratoire de Chimie des Substances NaturellesUniversité de LimogesLimoges CedexFrance
  3. 3.INSERM UMR 850Univ. LimogesLimogesFrance
  4. 4.Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of SciencePalacký University of OlomoucOlomoucCzech Republic
  5. 5.Departamento de Química FísicaUniversidad de AlicanteAlicanteSpain

Personalised recommendations